Cassini Ultraviolet Imaging Spectrograph UVIS HSP

Ring Stellar Occultation Atlas

Volume 4: Rev 060 - Rev 090

Version: 1.3
May 31, 2018

Table of Contents

The table lists all occultations in this volume, including the star name, rev number, indication of ingress (I) or egress (E), date of the occultation, duration of the occultation, radial range coverage and elevation angle of the star.

Occultations are presented chronologically in the order they were observed. To keep the file size of this atlas manageable, it is presented in multiple volumes, each one covering a subset of the occultations.

Introduction

Over the course of the Cassini mission, the High Speed Photometer (HSP) of the Ultraviolet Imaging Spectrograph (UVIS) observed 170 occultations of stars by Saturn's rings. Details on the UVIS instrument can be found in Esposito et al. $(1998,2004)$. Information on the handling of HSP ring occultation data as well as a summary of data calibration and reduction techniques for the first part of the Cassini mission are in Colwell et al. (2010). This document provides a tabular and visual overview of these stellar occultations.

Description of Data Products in the Atlas

The HSP data consist of a time series of measured photon counts. With the exception of observations of some faint stars where the background signal dominates or is a significant contribution, the measured signal is primarily due to starlight transmitted through the rings. The HSP integration times are $1,2,4$, or 8 msec . The majority of occultations used a 1 msec integration period, with most of the rest at 2 msec . In this atlas the data are binned to 1 second.

The data are shown in two plots: (1) a plot spanning the range of $70,000 \mathrm{~km}$ to $150,000 \mathrm{~km}$ from Saturn for all occultations to allow direct comparison of signal and coverage on a single distance scale; and (2) a plot that shows the data zoomed to the radial range of coverage of the occultation.

Two additional geometry plots are included for each occultation: (1) the radial ring plane resolution of the occultation (in the frame of Saturn, not accounting for ring particle motion or diffraction); and (2) the value of ϕ, an angle measured in the ring plane in the counterclockwise sense from the outward radial vector at the measurement point to the direction to the star projected into the ring plane. Thus, an observation where the look vector to the star is tangent to the rings has $\phi=90$ degrees.

On the page following the data plots, a geometry visualization is shown at a time near the middle of the occultation. The position of the UVIS HSP field of view is labeled on each of these plots. Occultations that cut a chord across the rings, are presented here as separate "Ingress" and "Egress" occultations, referring to the portion of the occultation where the observation point is approaching or receding from Saturn, respectively. Some geometry visualizations are missing and will be included in the next revision of this volume.

Document assembled by Joshua Colwell, UVIS Co-Investigator, University of Central Florida, with the assistance of Stephanie Eckert Grant, Richard Jerousek, and Tina Notrika, UCF.

References

1. Colwell, J. E., L. W. Esposito, D. Pettis, M. Sremčević, R. G. Jerousek, E. T. Bradley 2010. Cassini UVIS Stellar Occultation Observations of Saturn's Rings. Astron. J. 140, 15691578, doi:10.1088/0004-6256/140/6/1569.
2. Esposito, L. W., J. E. Colwell, and W. E. McClintock 1998. Cassini UVIS Observations of Saturn's Rings. Planet. Space Sci. 46, 1221-1235.
3. Esposito, L. W., C. A. Barth, J. E. Colwell, G. M. Lawrence, W. E. McClintock, A. I. F. Stewart, H. U. Keller, , A. Korth, H. Lauche, M. Festou, A. L. Lane, C. J. Hansen, J. N. Maki, R. A. West, H. Jahn, R. Reulke, K. Warlich, D. E. Shemansky, and Y. L. Yung 2004. The Cassini Ultraviolet Imaging Spectrograph Investigation. Space Sci. Rev. 115, 299-361.

Star		Rev	Ing/Eg	Year/Day	B	¢	Radius	Duration (min)
β	HYA	60	I	2008-059	38.6	183.2-173.7	162266-121735	205.7
δ	PER	60	1	2008-062	-54	274.5-283.9	146216-54973	126.2
ζ	CEN	60	1	2008-060	53.6	231.2-221.1	146506-66647	288.7
ζ	CEN	62	E	2008-082	53.6	77.3-67.0	63689-145087	297.2
α	ARA	63	E	2008-092	54.4	95.8-112.3	73260-141565	142.2
α	SEX	63	E	2008-095	2.7	271.2-337.4	90295-223682	55.6
α	SEX	63	I	2008-095	2.7	207.7-271.2	202539-90295	49.3
β	CEN	64	E	2008-101	66.7	137.8-89.7	84951-151166	344.8
δ	CEN	64	E	2008-100	55.6	117.2-107.9	131696-133387	78.6
δ	CEN	64	1	2008-100	55.6	127.9-117.2	133945-131696	90.7
Y	CAS	64	1	2008-102	-66.3	201.9-177.9	119600-71732	73.5
α	ARA	65	E	2008-111	54.4	110.4-112.9	125009-143857	38.7
ε	CEN	65	I	2008-110	59.6	229.0-221.7	148191-69866	262.2
δ	CEN	66	E	2008-119	55.6	117.4-110.6	130072-130974	56.9
δ	CEN	66	1	2008-119	55.6	142.4-117.4	143054-130072	220.9
δ	CEN	68	1	2008-137	55.6	203.4-201.9	150366-124550	78.8
θ	HYA	70	E	2008-156	-1.4	89.5-160.3	126499-384125	54.5
θ	HYA	70	I	2008-156	-1.4	17.9-89.5	401040-126499	57.1
θ	HYA	71	E	2008-163	-1.4	89.5-153.9	124439-287670	39
θ	HYA	71	1	2008-163	-1.4	23.2-89.5	310043-124439	42.7
β	CEN	75	1	2008-188	66.7	264.4-283.5	144447-72426	160.2
Y	CNC	75	1	2008-190	-21.3	24.1-79.8	130699-71827	170.7
β	CEN	77	E	2008-203	66.7	34.6-54.4	73267-143445	169.8
β	CEN	77	I	2008-203	66.7	264.4-282.9	144893-73333	158
β	CEN	78	E	2008-210	66.7	23.7-54.8	58469-145024	212.2
α	ARA	79	E	2008-217	54.4	49.5-70.2	94195-100266	47.9
α	ARA	79	I	2008-217	54.4	354.2-49.5	157552-94195	177.1
β	CEN	81	1	2008-231	66.7	267.6-294.4	151691-72828	203.2
γ	CRU	82	1	2008-238	62.3	225.5-240.6	154701-54365	254.2
α	ARA	85	E	2008-261	54.4	49.7-106.4	93509-157486	181.2
α	ARA	85	1	2008-261	54.4	353.3-49.7	160543-93509	182
β	CEN	85	1	2008-261	66.7	269.5-295.3	143414-73110	183.2
α	ARA	86	E	2008-268	54.4	49.8-107.2	93406-160105	186.2
α	ARA	86	1	2008-268	54.4	352.5-49.8	163469-93406	187
α	CRU	87	1	2008-275	68.2	194.9-190.2	92911-74173	46.8
β	CEN	89	1	2008-290	66.7	269.8-296.4	141885-71853	182.2
α	ARA	90	E	2008-298	54.4	49.7-106.7	92106-156651	180.2
α	ARA	90	I	2008-298	54.4	352.7-49.7	160553-92106	182.5

.DIONE

2008-058T23:25:00.000 1458114.4 km
Target RA/dec: 177.92, -30.43
Subsolar lat/Ion: -6.66, 27.82
Sub-s/c lat/Ion: 29.94, 44.25

う

2008-062T07:42:00.000 249683.09 km
Target RA/dec: 21.28, 43.53
Subsolar lat/Ion: -6.62, -164.33
Sub-s/c lat/Ion: -45.06, 55.86

ENCELADUS

2008-060T18:29:00.000 958349.05 km
Target RA/dec: 202.10, -43.83
Subsolar lat/Ion: -6.63, 12.93
TETHYS
Sub-s/c lat/Ion: 44.39, 54.07

.TETHYS

```
PALLENE ENCELADUS
```


2008-082T13:43:00.000 728866.59 km
Target RA/dec: 220.75, -48.63
Subsolar lat/Ion: -6.36, -22.81
Sub-s/c lat/Ion: 49.85, 38.62

DIONE

ENCELADUS

.TETHYS

MIMÅS

)NE

2008-095T09:55:00.000 1246634.0 km
Target RA/dec: 147.74, -0.61
Subsolar lat/Ion: $-6.20,5.68$
Sub-s/c lat/Ion: 2.06, -6.51

ALP SEX Rev 063 Egress

ALP SEX Rev 063 Egress

[^0]BET CEN Rev 064 Egress

BET CEN Rev 064 Egress

TETHYS

PALLENE
2008-101T12:52:00.000 676601.19 km
Target RA/dec: 226.69, -56.40
Subsolar lat/Ion: -6.13, 81.43
Sub-s/c lat/Ion: 58.20, 149.47

MIMAS

INE

2008-100T16:23:00.000 1021707.9 km
Target RA/dec: 190.50, -46.34
Subsolar lat/Ion: -6.14, 53.40
Sub-s/c lat/Ion: 46.31, 80.02

2008-100T17:48:00.000 1001958.0 km
Target RA/dec: 191.86, -47.04
Subsolar lat/Ion: -6.14, 5.55
Sub-s/c lat/Ion: 47.13, 33.57

GAM CAS Rev 064 Ingress

GAM CAS Rev 064 Ingress

MIMAS
G_ARC

PHOEBE

DIONE

TETHYS

METHONE
2008-111T15:19:00.000 385838.77 km
Target RA/dec: 289.96, -42.86
Subsolar lat/Ion: -6.00, 171.04
Sub-s/c lat/Ion: 39.82, -53.35

EPS CEN Rev 065 Ingress

2008-110T11:59:00.000 931476.84 km
Target RA/dec: 197.05, -49.49
Subsolar lat/Ion: -6.01, 14.42
Sub-s/c lat/Ion: 50.00, 47.63

DEL CEN Rev 066 Ingress

DEL CEN Rev 066 Ingress

DIONE

2008-119Т18:05:00.000 1034455.9 km
Target RA/dec: 189.40, -45.83
Subsolar lat/Ion: -5.90, 71.50
Sub-s/c lat/Ion: 45.72, 96.35

INE

PALLENE

2008-119T20:24:00.000 1002507.7 km
Target RA/dec: 191.56, -46.98
Subsolar lat/Ion: -5.90, -6.76
Sub-s/c lat/Ion: 47.04, 20.33

PALLENE

Target RA/dec: 175.94, -43.99
Subsolar lat/Ion: -5.67, - 127.85
Sub-s/c lat/Ion: 42.89, - 117.96

THE HYA Rev 070 Ingress

IAPETUS

2008-156T08:57:00.000 1174726.7 km
Target RA/dec: 144.64, 3.21
Subsolar lat/Ion: $-5.44,-98.15$
Sub-s/c lat/Ion: -1.34, -114.95

THE HYA Rev 070 Egress

IAPETUS

[^1]


```
2008-163T12:34:00.000 1176803.0 km
Target RA/dec: 144.55, 3.15
Subsolar lat/Ion: -5.35, -135.67
Sub-s/c lat/Ion: -1.29, -152.79
```

THE HYA Rev 071 Egress

THE HYA Rev 071 Egress


```
2008-163T13:15:00.000 1181321.6 km
Target RA/dec: 144.67, 2.84
Subsolar lat/Ion: -5.35, -158.75
Sub-s/c lat/Ion: -1.03, -175.78
```


ENCEL

2008-188T22:02:00.000 483291.30 km
Target RA/dec: 185.87, -58.73
Subsolar lat/Ion: -5.03, 155.46
Sub-s/c lat/Ion: 59.48, 171.27

.TETHYS

MIMAS

HYPERION
2008-190T12:03:00.000 795729.20 km
Target RA/dec: 135.42, 23.70
Subsolar lat/Ion: -5.01, -48.80
Sub-s/c lat/Ion: -19.30, -73.39

.TETHYS

ENCELADUS

2008-202T23:44:00.000 483189.94 km
Target RA/dec: 185.54, -58.59
PALLENE
Subsolar lat/Ion: -4.85, -92.65
Sub-s/c lat/Ion: 59.30, -77.62

.TETHYS
ENCELADUS

2008-203T06:23:00.000 284519.25 km
Target RA/dec: 258.65, -66.73
Subsolar lat/Ion: $-4.85,42.70$
PALLENE

BET CEN Rev 078 Egress

BET CEN Rev 078 Egress

.DIONE

ENCELADUS

PALLENE

2008-210T07:01:00.000 295082.59 km
Target RA/dec: 251.72, -67.59
Subsolar lat/Ion: -4.76, 105.97
Sub-s/c lat/Ion: 69.96, -155.01

ENCELADUS

METHONE

TETHYS

MIMAS

Target RA/dec: 268.65, -64.28
Subsolar lat/Ion: -4.68, -79.28
Sub-s/c lat/Ion: 64.45, 37.63

ENCELADUS

.TETHYS

Target RA/dec: 287.99, -56.32
Subsolar lat/Ion: -4.67, - 142.34
Sub-s/c lat/Ion: 53.80, -8.37

TETHYS

EPIMETHEUS

EN(

METHONE
2008-231T12:51:00.000 583755.24 km
Target RA/dec: 188.81, -60.10
Subsolar lat/Ion: -4.49, 162.91
Sub-s/c lat/Ion: 61.11, -179.64

ENCELADUS

TETHYS

2008-238T16:09:00.000 690768.30 km
Target RA/dec: 175.95, -52.39
Subsolar lat/Ion: -4.40, 136.09
Sub-s/c lat/Ion: 51.59, 140.98


```
PHOEBEFHEA
```

PALLENE

2008-261T09:39:00.000 369370.60 km
Target RA/dec: 268.17, -64.42
Subsolar Iat/Ion: -4.12, 68.13
Sub-s/c lat/Ion: 64.65, -176.82

TITAN

RHEA

PHOEBE

2008-261T12:40:00.000 301387.94 km
Target RA/dec: 297.24, -49.03
Subsolar lat/Ion: -4.12, -33.78
Sub-s/c lat/Ion: 45.35, 105.93

2008-261T00:26:00.000 579039.91 km
Target RA/dec: 189.45, -60.52
Subsolar lat/Ion: -4.12, 19.49
Sub-s/c lat/Ion: 61.64, 36.63

2008-268T18:27:00.000 369961.64 km
Target RA/dec: 267.75, -64.53
Subsolar lat/Ion: -4.03, - 144.49
Sub-s/c lat/Ion: 64.81, -30.07

IAPETUS

PHOEBE

2008-268T21:32:00.000 300545.93 km
Target RA/dec: 297.48, -48.76
Subsolar lat/Ion: -4.02, 111.35
Sub-s/c lat/Ion: 45.07, - 109.00

ALP CRU Rev 087 Ingress

ALP CRU Rev 087 Ingress

DIONE

ENCELADUS

2008-290T10:28:00.000 574290.24 km
Target RA/dec: 189.51, -60.61
Subsolar lat/Ion: -3.75, -71.57
Sub-s/c lat/Ion: 61.74, -55.30

2008-298T02:33:00.000 368306.56 km
Target RA/dec: 267.66, -64.39
Subsolar lat/Ion: -3.66, -170.24
Sub-s/c lat/Ion: 64.68, -56.93

ALP ARA Rev 090 Egress

2008-298T05:34:00.000 300671.25 km
Target RA/dec: 296.93, -48.96
Subsolar lat/Ion: $-3.65,87.85$
Sub-s/c lat/Ion: 45.33, - 133.92

[^0]: 2008-095T10:48:00.000 1254639.3 km
 Target RA/dec: 148.00, - 1.01
 Subsolar lat/Ion: -6.20, -24.16
 Sub-s/c lat/Ion: 2.41, -36.14

[^1]: 2008-156T09:52:00.000 1180844.4 km
 Target RA/dec: 144.80, 2.79
 Subsolar lat/Ion: -5.44, - 129.12
 Sub-s/c lat/Ion: -0.98, - 145.80

