Cassini Ultraviolet Imaging Spectrograph UVIS HSP

Ring Stellar Occultation Atlas

Volume 7: Rev 202 - Rev 245

Version: 1.3
May 31, 2018

Table of Contents

The table lists all occultations in this volume, including the star name, rev number, indication of ingress (I) or egress (E), date of the occultation, duration of the occultation, radial range coverage and elevation angle of the star.

Occultations are presented chronologically in the order they were observed. To keep the file size of this atlas manageable, it is presented in multiple volumes, each one covering a subset of the occultations.

Introduction

Over the course of the Cassini mission, the High Speed Photometer (HSP) of the Ultraviolet Imaging Spectrograph (UVIS) observed 170 occultations of stars by Saturn's rings. Details on the UVIS instrument can be found in Esposito et al. $(1998,2004)$. Information on the handling of HSP ring occultation data as well as a summary of data calibration and reduction techniques for the first part of the Cassini mission are in Colwell et al. (2010). This document provides a tabular and visual overview of these stellar occultations.

Description of Data Products in the Atlas

The HSP data consist of a time series of measured photon counts. With the exception of observations of some faint stars where the background signal dominates or is a significant contribution, the measured signal is primarily due to starlight transmitted through the rings. The HSP integration times are $1,2,4$, or 8 msec . The majority of occultations used a 1 msec integration period, with most of the rest at 2 msec . In this atlas the data are binned to 1 second.

The data are shown in two plots: (1) a plot spanning the range of $70,000 \mathrm{~km}$ to $150,000 \mathrm{~km}$ from Saturn for all occultations to allow direct comparison of signal and coverage on a single distance scale; and (2) a plot that shows the data zoomed to the radial range of coverage of the occultation.

Two additional geometry plots are included for each occultation: (1) the radial ring plane resolution of the occultation (in the frame of Saturn, not accounting for ring particle motion or diffraction); and (2) the value of ϕ, an angle measured in the ring plane in the counterclockwise sense from the outward radial vector at the measurement point to the direction to the star projected into the ring plane. Thus, an observation where the look vector to the star is tangent to the rings has $\phi=90$ degrees.

On the page following the data plots, a geometry visualization is shown at a time near the middle of the occultation. The position of the UVIS HSP field of view is labeled on each of these plots. Occultations that cut a chord across the rings, are presented here as separate "Ingress" and "Egress" occultations, referring to the portion of the occultation where the observation point is approaching or receding from Saturn, respectively. Some geometry visualizations are missing and will be included in the next revision of this volume.

Document assembled by Joshua Colwell, UVIS Co-Investigator, University of Central Florida, with the assistance of Stephanie Eckert Grant, Richard Jerousek, and Tina Notrika, UCF.

References

1. Colwell, J. E., L. W. Esposito, D. Pettis, M. Sremčević, R. G. Jerousek, E. T. Bradley 2010. Cassini UVIS Stellar Occultation Observations of Saturn's Rings. Astron. J. 140, 15691578, doi:10.1088/0004-6256/140/6/1569.
2. Esposito, L. W., J. E. Colwell, and W. E. McClintock 1998. Cassini UVIS Observations of Saturn's Rings. Planet. Space Sci. 46, 1221-1235.
3. Esposito, L. W., C. A. Barth, J. E. Colwell, G. M. Lawrence, W. E. McClintock, A. I. F. Stewart, H. U. Keller, , A. Korth, H. Lauche, M. Festou, A. L. Lane, C. J. Hansen, J. N. Maki, R. A. West, H. Jahn, R. Reulke, K. Warlich, D. E. Shemansky, and Y. L. Yung 2004. The Cassini Ultraviolet Imaging Spectrograph Investigation. Space Sci. Rev. 115, 299-361.

Star		Rev	Ing/Eg	Year/Day	B	$\boldsymbol{\phi}$	Radius	Duration (min)
α	LYR	202	E	$2014-067$	-35.2	$30.5-37.8$	$76635-145774$	120.2
α	LYR	202	I	$2014-067$	-35.2	$233.1-242.3$	$153445-69972$	145.2
Y	COL	205	E	$2014-172$	30.9	$305.2-338.5$	$80178-95872$	173.4
人	COL	205	I	$2014-172$	30.9	$249.0-305.2$	$144025-80178$	394.8
α	LYR	206	I	$2014-198$	-35.2	$245.4-270.9$	$147031-69892$	170.2
了	PUP	208	E	$2014-276$	38.6	$99.5-85.9$	$69361-118240$	405.2
ζ	PUP	208	I	$2014-275$	38.6	$232.1-219.0$	$129519-73678$	456.8
α	VIR	210	I	$2014-339$	17.3	$316.7-299.9$	$146048-70692$	190.2
α	VIR	211	E	$2015-008$	17.3	$235.2-202.0$	$105299-125667$	118.6
α	VIR	211	I	$2015-008$	17.3	$277.9-235.2$	$142949-105299$	167.1
β	CMA	211	I	$2015-020$	14.2	$224.1-222.1$	$144301-82575$	471.2
δ	CET	211	E	$2015-011$	-6.8	$258.7-206.3$	$79735-130625$	72.3
δ	CET	211	I	$2015-011$	-6.8	$311.6-258.7$	$132308-79735$	73.8
Y	PEG	211	E	$2015-010$	-20.3	$114.9-125.9$	$70726-152023$	120.2
K	ORI	212	I	$2015-049$	5.2	$241.3-276.5$	$148652-70932$	593.2
ζ	ORI	231	E	$2016-030$	-2.7	$241.2-216.0$	$90066-99458$	67.3
ζ	ORI	231	I	$2016-030$	-2.7	$293.1-241.2$	$144503-90066$	180.9
α	VIR	232	E	$2016-045$	17.3	$86.0-90.9$	$70190-143844$	228.8
γ	ORI	234	I	$2016-094$	-11.2	$311.7-281.3$	$148659-71026$	116.2
δ	SCO	236	E	$2016-153$	28.7	$222.1-210.4$	$86468-88319$	68.3
δ	SCO	236	I	$2016-153$	28.7	$275.0-222.1$	$142854-86468$	431.9
α	SCO	237	E	$2016-177$	32.2	$229.1-190.5$	$112095-143105$	275.2
α	SCO	237	I	$2016-177$	32.2	$267.1-229.1$	$142067-112095$	270
α	SCO	239	I	$2016-218$	32.2	$339.3-346.8$	$151860-96875$	120.2
α	SCO	241	E	$2016-243$	32.2	$70.7-124.2$	$70321-152137$	184.8
α	SCO	241	I	$2016-243$	32.2	$359.1-70.7$	$146494-70321$	210
α	SCO	243	E	$2016-267$	32.2	$74.7-124.1$	$70264-148897$	172.9
σ	SGR	244	E	$2016-277$	29.1	$253.1-226.9$	$130684-145150$	50.3
σ	SGR	244	I	$2016-277$	29.1	$275.7-253.1$	$141330-130684$	42.8
α	SCO	245	E	$2016-287$	32.2	$64.7-127.2$	$70331-149516$	143.7
α	SCO	245	I	$2016-287$	32.2	$1.8-64.7$	$151942-70331$	146.4

MIMAS
.TETHYS

2014-067T04:02:00.000 901418.98 km
Target RA/dec: 271.56, 36.95
Subsolar lat/Ion: 17.69, -7.12
Sub-s/c lat/Ion: -27.91, 34.79

ALP LYR Rev 202 Egress

ALP LYR Rev 202 Egress

ENCELADUS

.TETHYS

2014-067T10:14:00.000 874564.93 km
Target RA/dec: 285.32, 41.53
Subsolar lat/Ion: 17.69, 143.43
Sub-s/c lat/Ion: -33.29, -162.30

GAM COL Rev 205 Ingress

GAM COL Rev 205 Ingress

TETHYS

ENCEL

MIMAS

2014-172T16:04:00.000 1955078.6 km
Target RA/dec: 85.79, -35.48
Subsolar lat/Ion: 18.45, 136.42
Sub-s/c lat/Ion: 26.01, - 10.34

GAM COL Rev 205 Egress

GAM COL Rev 205 Egress

ENCELADUS

.TETHYS

DIONE

EN

TETHYS

2014-197T22:54:00.000 1034853.9 km
Target RA/dec: 271.92, 38.26
Subsolar lat/Ion: 18.62, 156.51
Sub-s/c lat/Ion: -29.09, - 165.62

)IONE

ENC

2014-275T12:03:00.000 3085263.7 km
Target RA/dec: 118.98, - 39.40
Subsolar lat/Ion: 19.13, -76.29
Sub-s/c lat/Ion: 32.37, 164.72

TETHYS

ENCELADUS

2014-276T10:52:00.000 3136538.3 km
Target RA/dec: 123.08, - 39.72
Subsolar lat/Ion: 19.13, - 127.08
DIONE
Sub-s/c lat/Ion: 33.09, 117.83

2014-339T06:09:00.000 1778351.4 km
Target RA/dec: 198.66, -11.93
Subsolar lat/Ion: 19.52, 74.26
Sub-s/c lat/Ion: 14.83, 37.23

ALP VIR Rev 211 Ingress

PHOEBE

TETHYS

ALP VIR Rev 211 Egress

ALP VIR Rev 211 Egress

Phoebe

TETHYS

2015-008T06:20:00.000 990054.34 km
Target RA/dec: 197.30, -9.78
Subsolar lat/Ion: 19.72, - 137.84
Sub-s/c lat/Ion: 13.03, -177.27

BET CMA Rev 211 Ingress

IONE

TETHYS

2015-020T07:44:00.000 3181139.2 km
Target RA/dec: 94.17, -17.72
Subsolar lat/Ion: 19.79, 165.80
Sub-s/c lat/Ion: 11.35, 21.97

2015-011T04:46:00.000 977342.49 km
Target RA/dec: 34.66, 0.59
Subsolar lat/Ion: 19.74, 2.80
Sub-s/c lat/Ion: -5.79, 161.17

DEL CET Rev 211 Egress

DEL CET Rev 211 Egress

TETHYS
NE

MIMAS

2015-011T05:59:00.000 998740.71 km
Target RA/dec: 35.95, - 0.11
Subsolar lat/Ion: 19.74, -38.30
Sub-s/c lat/Ion: -5.22, 121.37

GAM PEG Rev 211 Egress

GAM PEG Rev 211 Egress

HYPERION

2015-010T13:19:00.000 704120.03 km
Target RA/dec: 10.97, 12.84
Subsolar lat/Ion: 19.73, 164.72
Sub-s/c lat/Ion: -15.41, -61.44

2015-049T16:11:00.000 2869495.5 km
Target RA/dec: 84.90, -9.77
Subsolar lat/Ion: 19.95, 128.26
Sub-s/c lat/Ion: 4.19, -24.93

2016-030T20:20:00.000 594940.39 km
Target RA/dec: 74.95, - 3.54
Subsolar lat/Ion: 21.49, -95.23
Sub-s/c lat/Ion: -1.49, 90.68

2016-030T22:24:00.000 649192.93 km
Target RA/dec: 79.17, -3.40
Subsolar lat/Ion: 21.49, - 165.05
Sub-s/c lat/Ion: -1.37, 25.08

ALP VIR Rev 232 Egress

ALP VIR Rev 232 Egress

. IITAN

TETHYS

ENCELADUS

2016-045T11:15:00.000 595533.11 km
Target RA/dec: 209.97, -9.29
Subsolar lat/Ion: 21.53, -69.79
Sub-s/c lat/Ion: 13.07, - 109.55

GAM ORI Rev 234 Ingress

GAM ORI Rev 234 Ingress

HYPERION

2016-094T17:01:00.000 683246.29 km
Target RA/dec: 73.44, 6.04
Subsolar lat/Ion: 21.68, -31.86
Sub-s/c lat/Ion: -9.51, 151.01

.DIONE

PHOEBE

MIMAS

```
.TETHYS
```


.DIONE

PHOEBE

MIMAS

.TETHYS

ALP SCO B Rev 237 Ingress

ALP SCO B Rev 237 Ingress

MIMAS

EN

2016-177T14:39:00.000 1581070.3 km
Target RA/dec: 239.84, -26.25
Subsolar lat/Ion: 21.90, 75.01
Sub-s/c lat/Ion: 27.42, 62.19

ENCELADUS

TETHYS

2016-177T19:12:00.000 1531423.5 km
Target RA/dec: 242.21, -25.16
Subsolar lat/Ion: 21.90, -78.69
Sub-s/c lat/Ion: 26.35, -89.07

.TETHYS

byIS HSP

2016-218T16:59:00.000 1081595.9 km
Target RA/dec: 240.94, -31.35
Subsolar lat/Ion: 21.99, - 125.00
Sub-s/c lat/Ion: 32.14, - 137.74

RHEA

.TETHYS

ENCELAD

2016-243T12:16:00.000 715368.84 km
Target RA/dec: 245.64, -33.19
Subsolar lat/Ion: 22.03, -74.68
Sub-s/c lat/Ion: 33.81, -83.07

ALP SCO B Rev 243 Egress

ALP SCO B Rev 243 Egress

HYPERION

IAPETUS

2016-277T16:13:00.000 415893.32 km
Target RA/dec: 262.10, -23.65
Subsolar lat/Ion: 22.09, -53.97
Sub-s/c lat/Ion: 24.35, -47.00

HYPERION

○

2016-277T16:59:00.000 403948.78 km
Target RA/dec: 265.16, -20.45
Subsolar lat/Ion: 22.09, -79.87
Sub-s/c lat/Ion: 21.31, -70.05

ALP SCO B Rev 245 Ingress

ALP SCO B Rev 245 Ingress

, TITAN

TETHYS

2016-28才106:15:00.000 406665.29 km
Target RA/dec: 265.03, - 20.41
Subsolar lat/Ion: 22.11, 95.12
Sub-s/c lat/Ion: 21.28, 104.48

