

Titan: The Solar System's Abiotic Petroleum Factory

J. Hunter Waite, Ph.D. Institute Scientist Space Science & Engineering Division Southwest Research Institute®

Titan: The Solar System's Abiotic Petroleum Factory

Motivation for Titan Studies:

Titan's atmosphere is similar to Earth's early atmosphere

Titan may help us understand the origin of life in the solar system

Titan may help us unlock the mysteries to organic formation in other regions of our galaxy and universe

Cassini Huygens Measurements

July 22, 2006 Cassini's Search for Lakes Continues

Orbiter In Situ Measurements

Mass Spectrometry

Mass Spectrometry

Cassini Huygens Measurements

July 22, 2006 Cassini's Search for Lakes Continues

Orbiter Remote Sensing Measurements

Infrared Spectrometry

Cassini Huygens Measurements

July 22, 2006 Cassini's Search for Lakes Continues

Probe Measurements

Cassini Huygens Measurements

July 22, 2006 Cassini's Search for Lakes Continues

Orbiter Radar Measurements

Possibilities for Titan Geology: What's Cryo-Volcanism?

- Large rocky core; layers of liquid, water ice
- Abundant ammonia; melting point of water ice lowered by ±100°C
 - Tectonism could breach crust; fluid could reach surface
 - Ammonia-water "cryo-lava" would erupt as gelatinous mass

A Model of Titan's Interior

Cryo Volcanism

High Latitude Lakes

Interstellar Clouds

Organic Molecules in the Interstellar Medium, Comets and Meteorites: A Voyage from Dark Clouds to the Early Earth, Pascale Ehrenfreund & Steven B. Charnley, Annual Review of Astronomy & Astrophysics, 38:427-83, 2000

Stratospheric Composition

Dunes

Descent Sequence

Ion Neutral Mass Spectrometer

About the mission and the instrument

Geometry of the T_a, T_b and T₅ trajectories: with respect to Titan

The Ion Neutral Mass Spectrometer

The 2 INMS sources

In this presentation:

- Neutral densities from closed source

Ion densities
 from open source

Note:

A molecule of N_2 penetrating inside the closed source can be ionized and dissociated into N_2^+ and N^+ and be observed in the detector of mass channels 28 and 14

Atmospheric Structure

Mass Spectrum recorded during T_a

Plot produced 10.21:31 27-0ct-200

The Ion Neutral Mass Spectrometer

produces ion and neutral mass spectra

80

100

Neutral Gases lons Neutral Spectrum From Closed Source Ion Spectrum from Open Source Observed During Closest Approach of T16 Flyby Observed During Closest Approach of T16 Flyby 10000.00 1000.00 10 100.00 Signal (counts/IP) 104 Signal (counts/IP) 10.00 102 1.00 100 0.10 10-2 0.01 20 40 60 0 Mass (Da) 20 80 100 0 40 60 Mass (Da)

Relevance of INMS Observations

Evolution of the atmosphere of Titan

 Outgassing of the interior
 Escape of gases from Titan

 Production of organic compounds

 Ion and neutral photochemsitry
 The role of the magnetospheric interacation

Evolution of the Atmosphere: Outgassing of the Interior

- The isotopes of Argon tell us about outgassing from the interior
 - ⁴⁰Ar tells us how much of the volatile material has been outgassed from the interior
 - ⁴⁰Ar = 0.8 ppm --> ~2% of interior volatiles are outgassed
 - ³⁶Ar tells us how volatile materials like molecular nitrogen and methane were formed
 - ³⁶Ar < 0.6 ppm --> most nitrogen is derived from ammonia

36 A r

- The isotopes of molecular nitrogen and methane tell us about escape of volatiles from the atmosphere
 - The ratio of ¹⁴N to ¹⁵N in molecular 4N ¹⁴N ¹⁵N ¹⁴N ¹⁴N ¹⁴N ¹⁴N ¹⁴N ¹⁴N
 - The ratio of ¹²C to ¹³C in methane tells us about escape of methane and isotopic fractionation from photodissociation of methane

- The isotopes of molecular nitrogen tell us about escape of nitrogen
 - The ratio of ¹⁴N to ¹⁵N in molecular nitrogen tells us how much of the atmosphere has escaped over geological time
 - The change in the ratio as a function of altitude is due to diffusive separation in the presence of gravity

300

¹⁴N/¹⁵N Isotopic Ratios by Flyby

Methane isotopic ratios give us complimentary information

160

 INMS also sees direct evidence of heating of the upper atmosphere of Titan by energetic particles from Saturn's magnetosphere

> Divergence between the thermal exospheric profiles and the INMS data (z>1600 km)

And these elevated coronal temperatures imply escape of nitrogen and methane

Table 6: Liouville fit results for the INMS T_A , T_B and T_5 exospheric data, using the kappa function as energy distribution at the exobase.

			Resulting			Para	Solar		
			Fit Parameters			the Su	Input		
			к	T_0	χ^2	n^*	Φ_{esc}	E_D^*	E_D^{ph}
				(K)		(cm^{-3})	$(cm^{-2}s^{-1})$	$(eVcm^{-3}s^{-1})$	$(eVcm^{-3}s^{-1})$
N ₂	T_A	ingress	14.8	138.0	5×10^{-4}	3.0×10^{5}	1.4×10^{3}	6.1×10^{1}	9.0×10^{5}
		egress	8.86	119.9	4×10^{-4}	1.4×10^{5}	1.3×10^{5}	4.7×10^{1}	"
	T_B	egress	18.7	172.3	3×10^{-3}	1.6×10^{6}	1.2×10^{3}	2.0×10^{2}	8.9×10^{5}
	T_5	ingress	85.7	147.9	4×10 ⁻³	6.4×10 ⁻¹	2.8×10^{-5}	7.0×10^{-4}	8.9×10^{5}
		egress	7.78	115.5	2×10^{-3}	1.1×10^{5}	2.2×10^{5}	3.4×10^{1}	"
CH_4	T_A	ingress	8.74	134.2	5×10^{-4}	7.7×10^{4}	1.5×10^{6}	2.1×10^{1}	9.0×10^{5}
		egress	5.85	126.7	6×10^{-4}	7.0×10^{4}	1.3×10^{7}	2.6×10^{1}	,,
	T_B	egress	97.8	210.5	5×10^{-3}	3.1×10^{5}	4.9×10^{3}	4.9×10^{1}	8.9×10^{5}
	T_5	ingress	17.0	126.4	5×10^{-4}	4.0×10^{2}	7.5×10^{3}	2.7×10^{-1}	8.9×10^5
		egress	4.26	118.8	5×10^{-4}	8.6×10^{4}	5.1×10^{7}	3.6×10^{1}	**

 κ , T_0 Fit parameters characterizing the energy distribution at the exobase

 χ^2 Parameter characterizing the quality of the fit

 n^* Density of the suprathermal particles at the exobase (numerically)

 Φ_{esc} Escape flux at the exobase (numerically)

 E_D^* Suprathermal energy density in the exobase region, assumed to be 85 km-thick (numerically)

 E_D^{ph} Energy brought by solar photons into the 85 km-thick exobase layer

But not enough escape (10⁻⁴) to explain the implications of the measured isotopic ratio of molecular nitrogen

Isotopic Ratio	INMS	Terrestrial
	value	Reference
$^{14}N/^{15}N$	155	215
$^{12}C/^{13}C$	96	93.8

If we use the terrestrial ¹⁴N/¹⁵N as a reference this implies that over 70% of the Titan atmosphere has escaped over geological time, since the lighter isotope (¹⁴N) escapes preferentially with regard to the heavier isotope, ¹⁵N

However, we note that in spite of the chemical loss of methane in the atmosphere and its escape from the atmosphere the value remains close to the terrestrial value implying resupply within the last 50 million years

Atmospheric Escape:

Molecular Hydrogen from Methane Conversion Escapes

Ion Neutral Mass Spectrometer

Production of Complex Organics at High Altitude

via Ion Neutral Chemistry

Complex Carbon Nitrile Chemistry

The neutral composition at 1200 km in addition to the primary constituents N₂, CH₄, and H₂ includes a host of hydrocarbons: C₂H₂, C₂H₂, C₂H₆, C₃H₄, C₃H₈, C₄H₂, HCN, HC₃N, C₂N₂, and C₆H₆.

==> TITAN"S UPPER ATMOSPHERE IS A KEY SOURCE of CARBON NITRILE COMPOUNDS

IV.2 The Composition:

photo- and electron impact ionization and dissociations

– N	litrogen				Acety	/lene					
	$\begin{array}{ccc} N_2 + h \nu & \longrightarrow \\ & \longrightarrow \\ & \longrightarrow \end{array}$	$N(^{4}S) + N(^{2}D)$ N_{2}^{+} $N^{+} + N(^{4}S)$)		Products	Seki an	Scheme 1 e (1981, 1 ed Okabe (1849 Å	983) (1993) 1933 Å	Sch Vuitton and Läuter e 1216 S	eme 2 d Yelle (20 t al. (2002 & 1933 Å	905) 2)
	$N_2 + e^- \rightarrow$	$N(^4S) + N(^4S)$			$C_2 H_2^{**}$ $C_2 H + H$ $C_2 + H_2$	$\begin{array}{c} 0.6 \\ 0.3 \\ \leq 0.1 \end{array}$	$ \begin{array}{r} 0.84 \\ 0.06 \\ \leq 0.1 \end{array} $	$ \begin{array}{r} 1933 \ \mathbf{A} \\ 0.6 \\ 0.3 \\ \leq 0.1 \end{array} $		$\begin{array}{c} 0 \\ \simeq 1 \\ 0 \end{array}$	
	\rightarrow \rightarrow \rightarrow	$N(^{2}D) + N(^{4}S)$ $N(^{2}P) + N(^{4}S)$ $N(^{2}D) + N(^{2}D)$)				Eth	ylene H₄+hv→	$C_2H_2 +$	H ₂ .	
	\rightarrow \rightarrow \rightarrow	N_2^+ $N^+ + N(^4S)$ $N^+ + N(^2D)$					Eth	\rightarrow C_2	C_2H_2+2 $H_4^+, C_2H_3^+$	2 <i>H</i> ,, to <i>H</i> ⁺	
– N	lethane							$_{2}H_{6} + hv \rightarrow$	$\begin{array}{l} \leftarrow C_2H_4 + \\ \leftarrow C_2H_4 + \end{array}$	$+H_2,$ -2H,	
Products	<i>Mordaunt e</i> scheme 1	<i>t al.</i> (1993) <i>R</i> scheme 2	omani (1996)	Smith and H	Raulin (199	99)			$ C_2H_2 + C_2H_2 + C_1H_4 + C_2H_4 + $	$2H_2,$ $CH_2,$	
$CH_3 + H$ $^{3}CH_2 + 2H$ $^{1}CH_2 + H_2$	0.51 0.25 0.24	0.49 0 0	0.41 0.21 0.28	0. 0.	41 0 53			$\overrightarrow{C_2}$	$H_6^+, C_2 H_5^+$	<i>I</i> ₃ , ,, to <i>H</i> ⁺	
$CH_2 + 2H$ $CH + H_2 + H$	0	0 0.51	0 0.10	0.	06	_	H, H C ₂ N	H ₂ , N, H I ₂	ICN, I	−C ₃ N,	

IV.3 The Composition: the main ion-neutral scheme

The chemical scheme starts from the photo- and electron impact dissociation and ionization of Nitrogen and Methane

- Creation of the first key neutrals: C_2H_4 and HCN
- Production of the major ions: H_2CN^+ , $C_2H_5^+$, CH_3^+

IV.4 The Composition:

the main ion-neutral scheme – production rates

IV.5 The Composition: subsequent production of key hydrocarbons

INMS: Neutrals (~ 1200 km)

Species	INMS (TA)
CH ₄	3.3 x 10 ⁻²
C ₂ H ₂	2.8 x 10 -4
C ₂ H ₆	1.2 x 10 ⁻⁴
C ₃ H ₄	4.0 x 10 ⁻⁶
C ₃ H ₈	2.3 x 10 ⁻⁶

Waite et al. 2005

IV.6 The Composition:

production of heavy hydrocarbons and key ions

IV.8 The Composition: neutral results – local time dependent density profiles (1)

IV.10 The Composition:

ion results – local time dependent density profiles (1)

IV.11 The Composition: ion results – local time dependent density profiles (2)

Ion Neutral Mass Spectrometer

An Increased Role for the Magnetospheric Interaction

and Nitrile Ion Chemistry

INMS: Ions (1100 - 1300 km)

Keller et al. model flowchart

INMS / Keller et al. model

INMS / new Vuitton and Yelle model

New model flowchart

Ion Neutral Mass Spectrometer

Ultimate Fate of Complex Organics

Atmospheric Composition: Molar fractions estimated at 1174 km from the T_a data

(Closed source)

Minor species determined from the mass spectral deconvolution with one sigma error.

Species	INMS-Derived Values	Stratospheric Values (1)
CH ₄	2.19 ±0.002 x 10 ⁻²	2.2 x 10 ⁻²
H_2	$4.05 \pm 0.03 \text{ x } 10^{-3}$	1.1 x 10 ⁻³
C_2H_2	$1.89 \pm 0.05 \text{ x } 10^{-4}$	$2.2 \ge 10^{-6}$
C_2H_4	$2.59 \pm 0.70 \text{ x } 10^{-4} - 5.26 \pm 0.08 \text{ x } 10^{-4}$	9.0 x 10 ⁻⁸
C_2H_6	$1.21 \pm 0.06 \text{ x } 10^{-4}$	9.4 x 10 ⁻⁶
C_3H_4	$3.86 \pm 0.22 \text{ x } 10^{-6}$	4.4 x 10 ⁻⁹

 C_2H_4 value depends on the value adopted for HCN.

Stratospheric Composition

**

Cat Scratches

Acknowledgements

- National Aeronautics and Space Administration
- European Space Agency
- Jet Propulsion Laboratory
- Cassini-Huygens Science Teams
- Visual Infrared Mapping Spectrometer Team
- Radar Team

- Imaging Science Team
- Ion Neutral Mass Spectrometer Team
- Composite Infrared Spectrometer Team
- Gas Chromatograph Mass Spectrometer Team
- SwRI Communications Department

Southwest Research Institute®