Enceladus: Results from Recent Cassini Flybys of the Active Moon

> CHARM telecon 25 November 2008

Paul Helfenstein Sascha Kempf John Spencer

Overview of Recent Enceladus flybys

Rev 11 (E2): 14 July 2005

168 km altitude flyby, with closest approach at 16° S/332° W. The flyby when geologic activity was discovered.

Rev 61 (E3): 12 Mar 2008 50 km altitude flyby, with closest approach at 15° S/92° W. MAPS flyby.

Rev 80 (E4): 11 August 2008 50 km altitude flyby, with closest approach at 28° S/98° W

Rev 88 (E5): 9 Oct 2008 25 km altitude flyby, with closest approach at 28° S/97° W

Rev 91 (E6): 31 Oct 2008 200 km altitude flyby, with closest approach at 28° S/97° W

Science from the Flybys

- All 12 Cassini instruments have obtained important data from Enceladus that will ultimately provide many clues to its surface composition, interior structure, evolution, and plume activity
- Here we focus on Imaging, Thermal and Dust results.

Future Enceladus flybys

Rev 120 (E7): 2 Nov 2009

100 km altitude flyby, with closest approach at 88° S/339° W. MAPS at C/A - plume fly-through.

Rev 121 (E8): 21 Nov 2009 1600 km altitude flyby, with closest approach at 82° S/117° W. ORS flyby.

Rev 130 (E9): 28 April 2010 100 km altitude flyby, with closest approach at 88° S/147° W. Radio science flyby.

Rev 131 (E10): 18 May 2010 200 km altitude flyby, with closest approach at 59° S/304° W. UVIS solar occultation at C/A.

Stay tuned for more exciting results!

Cassini High-Resolution Imaging of Enceladus from the REV 80 and REV 91 "Skeet Shoot"

> Paul Helfenstein Cassini ISS Team Cornell University

November 25, 2008

Cassini Close Flybys of Enceladus in 2005

EN11 July 14, 2005 422 km

~4 m/pix

EN03 February 17, 2005 1423 km ~65 m/pix

(Trailing Side, Voyager overlap) (South Polar-Anti-Saturn)

EN04 (Anti-Saturn) March 9, 2005 747 km ~24 m/pix

Enceladus:

South Polar Plume Eruptions (Nov. 2005)

LOCATION OF HIGH RESOLUTION (4m/pixel) NAC (4m/pixel) NAC IMAGE and (40m/pixel) WAC BOTSIM from EN05 Flyby (July 05)

EN05 HIGH RESOLUTION BOTSIM: 40m/pixel WAC 2x2 Frame (left) and 4m/pixel NAC 2x2 Frame (below).

SCIENTIFIC OBJECTIVES

- 1) Observe morphological details of volcanically erupting features at high resolution (better than 10's of meters/pixel), look for structural variations related to their age and evolution.
- 2) Use high-resolution images as rosetta stones for understanding the wider distribution of other examples viewed at lower resolution.
- 3) Map terrain units, identify systematic geological and tectonic relationships, and interpret their physical significance.

Enceladus "Skeet Shoot": Why?

•At closest approach:

- altitude is 50 kilometers (30 miles)
- flyby velocity is 40,000 km/hr (24,000 miles/hour)
- Imaging camera is bolted to the side of the spacecraft
 - must turn entire spacecraft to point camera
- Spacecraft is as big as a bus
 - angular turn rate on reaction wheels too slow to track
 - angular acceleration rate is too slow to catch up
- Strategy:
 - position spacecraft early at a "staging attitude"
 - spin spacecraft on its Z axis (the fast one)
 - orient the Z axis so spin direction matches Enceladus path
 - time departure from staging attitude to hit geology targets

Enceladus E4 Flyby (August 11, 2008)

October 31, 2008

DAMASCUS SULCUS

BAGHDAD SULCUS

Funiscular (ropy) Plains Near Baghdad Sulcus (9m/pixel)

10 m/pixel Between Alexandria Sulcus and Cairo Sulcus

COMPARISON AT 10 meters/pixel

A. Funiscular Plains
B. Smooth Flank
C. Funiscular Plains
D. Funiscular Plains
E. Reticulated Plains

TIGER STRIPE MEDIAL DORSA (A.K.A. "SHARK FINS"): POSITIVE FLOWER STRUCTURES?

© 2008 Schlumberger Limited

CIRS Observations of Enceladus in 2008

John Spencer¹, John Pearl², Carly Howett¹, Marcia Segura², and the CIRS team

¹Southwest Research Institute, Boulder ²NASA-Goddard Spaceflight Center

Cassini CHARM Telecon, November 25th 2008

CIRS: Composite Infrared Spectrometer

- Measures long-wavelength infrared (heat) radiation from Saturn, its rings, and moons.
- Sensitive to wavelengths between 7 and 300 microns (14 600 times longer wavelength than visible light)
- For objects with atmospheres (Saturn and Titan), CIRS provides detailed information on atmospheric composition and temperature.
- For objects without substantial atmospheres (Saturn's rings, and its smaller moons) CIRS provides mostly temperature information (though we might learn something about composition if we're lucky).

Enceladus South Polar Hot Spot

- Discovered in July 2005
- Seen again (from a distance) in November 2006
- Heat emitted by the "tiger stripe" fractures
- Temperatures up to 145 K (-198 F)

80 79 80 81 3 87 78 74 78 74

Improved Mapping in March 2008

 July 2005 map: 25 km resolution...

- Typical 10 km resolution of Rev. 61 map
- Easily resolve the tiger stripes, map temperatures along them

March 2008 Map

 Temperatures of at least 180 K

March 2008 Tiger Stripe Map: Full Resolution

- Continuous radiation along the tiger stripes
 - Large, ~smooth, variations
- Plume sources tend to be warm (Spitale and Porco 2007)
 - But flux is not strongly peaked there

August 2008 Tiger Stripe Map

- Resolution 17 km
- Broadly similar distribution to March 2008

Longitudinal Profiling

Add up the radiation in each box for each observation

9 - 16 µm Power Profiles

9 - 16 µm Temperature Profiles

August 2008 High Resolution Scan

~1 - 2 km resolution

August 2008 Damascus Sulcus Stare

- 7 9 µm detector perfectly targeted on the fracture
- 2 x 4 km pixels

ISS image location relative to March 2008 CIRS data

Damascus Sulcus Spectrum

- The 2 CIRS detectors give ~consistent results
- Temperatures
 - March 2008:
 190 200 K
 - August 2008:
 158 167 K
- Real change?
 - Maybe not: August data much higher quality

Modeling

- Conductive heating heating of surface by narrow vertical fracture (Abramov and Spencer 2008)
- Need multiple fractures to ~fit the observed fluxes

1500 x (m)

I fracture = 273 K

Max-Planck-Institut für Kernphysik

Cosmic Dust Analyser (CDA)

Impact Ionisation Detector: Dust mass and impact speed Time-of-Flight Mass Spectrometer: Dust composition Charge Sensitive Grids: Dust charge High Rate Detector

Max-Planck-Institut für Kernphysik

Dust Production Within Ice Cracks

to explain:

- dust speed (250m/s) much slower than speed of emerging gas (500m/s)
- plumes are stratified: correlation between mass and speed
- gas-to-dust ratio: 10%
- in-situ size distribution

Max-Planck-Institut für Kernphysik

Dust Production Within Ice Cracks

 \bigcirc

Schmidt, Brillantov, Spahn and Kempf, Nature, 2008

- growing dust coupled to gas flow
- dissipative collisions with the walls control final dust size and speed
- ensembles of random channels
- Control parameter: L_{col} - smallest structure d_s - min/max width

A) CASSINI IMAGE N1487334245 1 100 KM FROM SATELLITE CENTER 200 I/F· 300 1.7e-07 400 2.7e-07 .6e-07 500 .3e-06 600 2.1e-06 .7e-06 700 4e-06 -300 -200 -100 100 200 300 0 KM .6e-05 B) MODEL .3e-05 100 7.1e-05 KM FROM SATELLITE CENTER 200 1.2e-04 3.2e-04 300 .4e-04 400 1.5e-03 500 600 700 -300 -200 -100 0 100 200 300 KΜ

Schmidt et al., Nature, 2008

cosmic dust analyser

Max-Planck-Institut für Kernphysik

Dust ProductionModel

- Model reproduces: remote Sensing, dust, and gas data
- Model gives temperature at the bottom of the cracks

Liquid water within cracks

Max-Planck-Institut für Kernphysik

Vertical Ring Profile is due to Enceladus Dust Jets

- Enceladus plumes inject fresh dust grains preferably in -z direction
- only particles launched faster than the 3 body escape speed can populate the ring

Max-Planck-Institut für Kernphysik

Enceladus Dust Ejection

performed numerical simulations of the plume particle ejection process

- J2 and EM
- RP doesn't matter here
- particles initially uncharged
- initial speed and mass distribution given by Schmidt et al. 2008 model
- jet location given by Spitale & Porco

Max-Planck-Institut für Kernphysik

Simulated Ring Profile Matches CDA Data

HRD data obtained during steep ring plane crossing in orbit 10 at about the Enceladus orbit.

- Ring profile reproduced by model that only considers freshly ejected Enceladus dust jets particles:
 - initial inclination is preserved at least until particles start to migrate outwards
 - contribution by ejecta grains may be "disguised":
 - rather flat inclination distribution

Max-Planck-Institut für Kernphysik

Best Model Fit to CDA EII Data

only Damascus jets were observed during EII

Plume mass production: 5 kg/s, active venting area: 225m²

Max-Planck-Institut für Kernphysik

Ice Deposition on Enceladus

mass deposition mostly at the locations of the jets

90% of the plume particles recollide with Enceladus

Max-Planck-Institut für Kernphysik

Composition of Enceladus Dust

- E ring dust consists of water ice, but
- There are 4 composition types:
 - Population I: pure water ice
 - Population II:

water ice with rocky or organic impurities

- Population III: Sodium-rich water ice
- Population IV: Iron-rich non-water material

Max-Planck-Institut für Kernphysik

Most Abundant Composition Types

Population I: Pure Water Ice Enceladus Surface ?

Population II: Water Ice + Impurity Enceladus Plumes ?

Postberg et al., Icarus, 2008

Max-Planck-Institut für Kernphysik

Where and When are the Observed Mass Lines Formed?

- mass lines are formed within the cloud of neutrals and ions produced by the dust impact onto the instrument's rhodium target
- dominating process is hydration:
 - $H^+ + H_2O \Rightarrow H_3O^+$
 - $H_3O^+ + H_2O \Rightarrow (H_2O) H_3O^+$

