Geophysical Study of Iapetus Constrained by *Cassini* Observations

Julie C. Castillo¹, Dennis L. Matson¹, Christophe Sotin¹, Torrence V. Johnson¹, Jonathan I. Lunine², Peter Thomas³

- 1. Jet Propulsion Laboratory, Pasadena, CA, USA
- 2. Lunar and Planetary Laboratory, Tucson, AZ, USA
- 3. Cornell University, Ithaca, NY, USA

CHARM Presentation – January 27, 2009

RESEARCH FOCUS AND SIGNIFICANCE

Icy objects contain information about the early Solar system and the development of potentially habitable environments.

IAPETUS - TWO PUZZLES

A VERY ANCIENT FEATURES: IAPETUS' EQUATORIAL RIDGE

Length ~ 4680 km

Width ~ 100 km

Height up to 20 km

Very steep flanks, slope angle partly $>30^{\circ}$!

Age ~ same as surroundings (4.4 - 4.5 By)

Model Requirements

- Dissipative Interior sufficient for lapetus' models to despin in less than the age of the Solar System
- Stiff lithosphere to retain the 17-h geoid and other topography

STATUS IN THE EARLY 80'S

Despinning Duration (y)

Link between viscoelastic structure and dynamics

RAW EGG

Initial impulse is of similar magnitude

The raw egg slows down faster than the cooked one!

COOKED EGG

Both eggs are disrupted from spinning in a similar way

The cooked egg stops immediately while the raw one resumes spinning!

ROTATION PERIOD FOR RESONANCE

TEMPERATURE AT THE END OF ACCRETION

Maximum temperature is reached at about 20 km depth (after the model by Squyres et al. 1988)

MODELING MEDIUM-SIZED ICY SATELLITES

- Medium-sized satellites accrete cold and porous
- Water ice at 80 K is one of the most conductive planetary minerals
- The time scale to warm the interior from long-lived radionuclides decay is longer than the cooling time scale
- The conditions for tidal heating to become a significant heat source in cold objects are not understood

There is an obvious discrepancy between models and observations

APPROACH

Initial Conditions

- Presence of SLRS
- Formation time: 1.5 to 10 My after CAIs
- Presence of ammonia
- Planetesimals temperature
- Insulating regolith layer

Other sources

- Evolution of the surface temperature
- Silicate hydration heat
- Long-lived radionuclides
- Gravitational energy
- Tidal dissipation (if enabled)

MODELING APPROACH

- Short- and long-lived radiogenic isotopes
- Insulating, porous layer
- Saturn's luminosity
- Impeded Convection (too cold)
- Tidal dissipation (coupled thermal-orbital evolution)
- Runaway effect of temperature-dependent thermal conductivity
 Ammonia and other ice melting-point depressant (depends on their amount)
- Surface temperature

COOLING

A REAL MYSTERY

IAPETUS

Classical Model, after Ellsworth and Schubert (1983)

²⁶Al

- First identified in Calcium-Aluminum Inclusions
- Initial ²⁶Al/²⁷Al ~ 5-6.5 x 10⁻⁵ (Pappanastassiou, Wasserburg, Lee)
- Half-life ~ 0.717 My

Formation Time (My) after CAI Formation

ROLE OF SLRS IN THERMAL EVOLUTION

- Play a role only in early evolution of the satellite early differentiation and geological activity)

 e internal temperatures high enough for hydration (and consequent volume change)
 e internal temperatures high enough for tidal tion to start
 - e internal temperatures high enough for ant porosity decrease

Porous Model, $t_0 > 6$ My after CAIs

Porous Model, $t_0 = 2.5$ My after CAIs

GEOLOGICAL CONSEQUENCES

²⁶AL IS NOT A FREE PARAMETER

Castillo-Rogez et al. (2007)

Planet Formation Timescales

Giant planets Models

- Gravitational instability e.g. Boss
- Core nucleated accretion currently favored
 - Time scale problem analogy to terrestrial accretion yields O(10⁸ yrs) – too long compared with stellar evidence
 - "runaway growth" and Oligarchic growth models can result in <10⁷ yr times scales (e.g. Lissauer, 1987)

Planet Formation Timescales

Evidence from stellar protoplanetary disks

- Gas loss <10⁷ yr (Meyer et al., 2007)
- Spitzer studies for ~ solar mass stars show that stars with 3-5 x 10⁶ yr ages lack indications of primordial planet-forming disks (e.g. Carpenter et al., 2006; Dahm and Hillenbrand 2007: Currie and Kenyon, 2008)

Evidence for Early Planet Formation

1 Million Year Old Planets?!

"A stellar prodigy has been spotted about 450 lightyears away in a system called UX Tau A by NASA's Spitzer Space Telescope. Astronomers suspect this system's central Sun-like star, which is just *one million years old*, may already be surrounded by young planets.

Spitzer Science Center release 11/28/2007

THE FUTURE: LABORATORY-BASED MODELS

- Current models are not supported by laboratory measurements
- Viscoelastic response models rely on the Maxwell model, known to be applicable for a very limited range of conditions in satellites

Mechanical Measurements in Cryogenic Conditions at Low Frequencies and Stresses are Challenging

Maxwell Model

- Q⁻¹~ ω^{-1} , assumes one relaxation time τ = η/E
- Easy to implement: depends only on two parameters
- Various measurements (lab-based, seismic data, glaciers) indicate that this model is not adequate

LABORATORY WORK

NEW EXPERIMENTAL FACILITIES AT JPL

WHERE DO WE START?

- Monocrystalline ice in order to identify dislocation-driven anelasticity
- Dislocation creep is thought to drive anelasticity in many conditions: warm temperatures, large grain size, high stress (cf. terrestrial rocks)

LABORATORY MEASUREMENTS

• Results have demonstrated that existing models of dissipation need to be revised using our laboratory data

SPECTRUM AT -30 deg. C

FUTURE *CASSINI* OBSERVATIONS WILL HELP CONSTRAIN THE FORMATION TIMESCALE FOR THE SATURNIAN SYSTEM

POTENTIAL OBSERVATIONS

- **Geology**: Ongoing and Past Geologic Activity (*e.g.*, Enceladus)
- Craters shape (porosity, thermal gradient)
- Surface Age: Crater Counting and resurfacing
- Equilibrium of the Shape
- Internal Structure: (*e.g.*, for Rhea)
- **Dynamical Evolution** (*e.g.*, lapetus)
- Surface composition (especially in craters, *e.g.*, Enceladus)