Cassini-INMS: Observations of Titan and Enceladus

B. Magee J. Westlake B. Teolis J. H. Waite, Jr.

Ion Neutral Mass Spectrometer Instrument Configuration

Mass Spectrum Data recorded by INMS

Ion spectrum

Ambient positively charged molecules enter the open source aperture and proceed through to the quadrupole mass analzyer.

Neutral spectrum

Ambient molecules enter the closed source, thermally equilibrate in the antechamber and proceed to the ionization source. Neutrals are converted to positive ions through electron impact and are filtered by the mass analyzer.

INMS Data Analysis

- Analysis returns depend on data viability, calibration, complexity of species mix, and a priori knowledge of sample.
- Electron-impact ionization of neutral molecules result not only in positively charged versions of the parent molecule, but ionized dissociative products as well.
- Overlapping spectral signatures make identification of individual species difficult.

Example of analysis difficulty:

 C_2 organic signatures occupy most of the same mass bins. At Titan the C_2 organics have similar abundances and are further masked by a dominant N_2 signal, making it difficult to single out the individual species.

Species	Mixing Ratio at 1050km
N ₂	(96.3 \pm 0.44) %
¹⁴ N ¹⁵ N	(1.08 \pm 0.06) %
CH ₄	(2.17 \pm 0.44) %
¹³ CH ₄	(2.52 \pm 0.46) x 10 ⁻⁴
H ₂	(3.38 \pm 0.23) x 10 ⁻³
C_2H_2	(3.42 \pm 0.14) x 10 ⁻⁴
C_2H_4	(3.91 \pm 0.16) x 10 ⁻⁴
C_2H_6	(4.57 \pm 0.74) x 10 ⁻⁵
HCN	(2.44 \pm 0.10) x 10 ⁻⁴
⁴⁰ Ar	(1.26 \pm 0.05) x 10 ⁻⁵
CH ₃ C ₂ H	(9.20 \pm 0.46) x 10 ⁻⁶
C ₃ H ₆	(2.33 \pm 0.18) x 10 ⁻⁶
C ₃ H ₈	(2.87 \pm 0.26) x 10 ⁻⁶
C ₄ H ₂	(5.55 \pm 0.25) x 10 ⁻⁶
C ₂ N ₂	(2.14 \pm 0.12) x 10 ⁻⁶
HC ₃ N	(1.48 \pm 0.09) x 10 ⁻⁶
C ₂ H ₃ CN	(3.46 \pm 0.51) x 10 ⁻⁷
C ₂ H ₅ CN	(1.54 \pm 0.48) x 10 ⁻⁷
C_6H_6	(2.48 \pm 0.11) x 10 ⁻⁶
C ₇ H ₈	(2.51 \pm 0.95) x 10 ⁻⁸
Density (cm ⁻³)	(3.18 \pm 0.71) x 10 9

VIMS

Benzene is detected by VIMS on the surface of Titan, primarily around the low latitude dune regions.

Titan's Nitrogen Photochemistry

De La Haye et al. (2008)

Imanaka and Smith (2007)

Benzene Formation Waite et al. (2007) Schema

Positive Ions

Masses up to ~350 Da.

Waite et al. (2007), Crary et al. (2009)

Negative lons

Masses up to ~10,000 Da.

CAPS-ELS

Coates et al. (2007)

GROUP	ALIPHATIC COMPOUNDS				AROMATIC COMPOUNDS			
ACETYLENE NITRILE POLYMERS ALIPI			ALIPHATIC COPOLYMERS	PAH POLYMERS	NITRILE AROMATIC POLYMERS			
1		104	100	105	98-101	103	103	104
(99 Da 110 Da.) Peak at 103 Da.		(C ₄ N ₄ ⁺)	(C ₆ N₂ ⁺)	(C₅H ₃ N ₃ ⁺)	(C ₇ N⁺)	(C₅H₃N⁺)	(C ₈ H7 ⁺)	(C ₇ H ₆ N⁺)
2	122		112		110-112		117	
(111 Da 122 Da.) Peak at 117 Da.	(C ₁₀ H ₂ ⁺)		(C ₇ N ₂ ⁺)		(C ₈ N⁺)		(C ₉ H ₉ ⁺)	
3		130	124	131	122-124	129	128	129-130
(123 Da 134 Da.) Peak at 127 Da.		(C₅N₅⁺)	(C ₈ N ₂ ⁺)	(C ₆ H ₃ N ₄ ⁺)	(C ₉ N⁺)	(C ₇ H₅N ⁺)	(C ₁₀ H ₈ ⁺)	(C ₉ H ₇₋₈ N ⁺)
4	146		136		134-136 146-148		141	
(135 Da 147 Da.) Peak at 141 Da.	(C ₁₂ H ₂ ⁺)		(C ₉ N ₂ ⁺)		(C ₁₀₋₁₁ N ⁺)		(C ₁₁ H ₉ ⁺)	
5		156	148	157		155	153	156
(148 Da 158 Da.) Peak at 153 Da.		(C ₆ N ₆ ⁺)	(C ₁₀ N ₂ ⁺)	(C ₇ H ₃ N ₅ ⁺)		(C ₉ H ₇ N⁺)	(C ₁₂ H ₉ ⁺)	(C ₁₁ H ₁₀ N ⁺)
6	170		160		158-160		165	
(159 Da 169 Da.) Peak at 165 Da.	(C ₁₄ H ₂ ⁺)		(C ₁₁ N ₂ ⁺)		(C ₁₂ N⁺)		(C ₁₃ H ₉ ⁺)	

25% - 36%

37% - 48%

Aromatic Chemistry

- The Most likely components of the high mass ions are aromatic compounds
- Chemistry from

Wilson and Atreya (2003)

Percent Occurrence

13% - 24%

Percent compared to

group probability

0% - 12%

- The likelihood of a peak in the mass per charge spectrum occurring at the specified mass bin.
- Peaks occur every **12-14 Da.** *Crary et al. (2009)*

INMS observations of the icy moon Enceladus

Subsurface Chemistry

1 INMS Signal	0 ⁶ E2 0 ⁴ 0 ³ 0 ² 0 ¹	E3	E4	E5 E5 C C C C C C C C C C C C C	E6 F C C C C C C C C C C C C C
	Encounter	Avg. Speed Enceladu	l wrt Mi us dist Sou he	nimum ance to th Polar otspot	Ram Angle at time of Plume Max
	E2	8.184 km	/s 3	30 km	57 deg.
	E3	14.41 km	/s 2	42 km	0 deg.
	E4	17.72 km	/s 1	93 km	80 deg.
	E5	17.73 km	/s 1	67 km	0 deg.
	E6	17.71 km	/s 3	10 km	73 deg.

Enceladus' plume is composed primarily of water vapor with carbon dioxide, methane, ammonia, ⁴⁰Ar, and a host of organics.

Waite et al. (2009)

Species	Volume mixing ratio		
H ₂ O	0.90 ± 0.01		
CO ₂	0.053 ± 0.001		
СО	[0.044]		
H ₂	[0.39]		
H ₂ CO	$(3.1\pm1) \times 10^{-3}$		
CH₃OH	$(1.5\pm0.6) imes10^{-4}$		
C_2H_4O	$< 7.0 \times 10^{-4}$		
C_2H_6O	$< 3.0 \times 10^{-4}$		
H ₂ S	$(2.1\pm1) \times 10^{-5}$		
⁴⁰ Ār	$(3.1\pm0.3) imes 10^{-4}$		
NH ₃	$(8.2\pm0.2)\times10^{-3}$		
N ₂	<0.011		
HCN [†]	$< 7.4 \times 10^{-3}$		
CH ₄	$(9.1\pm0.5)\times10^{-3}$		
C_2H_2	$(3.3\pm2)\times10^{-3}$		
C_2H_4	<0.012		
C_2H_6	$< 1.7 \times 10^{-3}$		
C_3H_4	$< 1.1 \times 10^{-4}$		
C ₃ H ₆	$(1.4\pm0.3) imes 10^{-3}$		
C ₃ H ₈	$< 1.4 \times 10^{-3}$		
C_4H_2	$(3.7\pm0.8) \times 10^{-5}$		
C_4H_4	$(1.5\pm0.6) \times 10^{-5}$		
C_4H_6	$(5.7\pm3) \times 10^{-5}$		
C_4H_8	$(2.3\pm0.3) imes 10^{-4}$		
C_4H_{10}	$< 7.2 \times 10^{-4}$		
C_5H_6	$<2.7 \times 10^{-6}$		
C ₅ H ₁₂	$< 6.2 \times 10^{-5}$		

 $(8.1\pm1)\times10^{-5}$

 C_6H_6

 Table 1 | INMS determination of plume composition on 9 October 2008

Ammonia at Enceladus

INMS data taken at Enceladus requires that NH_3 provide significant signal at masses 16 and 17 Da. Model mixture discrepancy stands at ~3 sigma without NH_3 .

- NH₃, together with CH₃OH and salts, permits existence of liquid water down to as low as 176 K.
- Preservation of oceanic layer would maintain conditions necessary for renewed episodes of tidal heating and geological activity. (Roberts and Nimmo)
- Low upper limit of primordial Ar suggests NH₃, rather than clathrate, is major carrier of N in the material that formed Enceladus

⁴⁰Ar: Water – Rock Interactions

⁴⁰Ar fills the residual signal at 40 Da that cannot be accounted for by other species detected by the INMS at Enceladus. ${}^{40}\text{K} \longrightarrow {}^{40}\text{Ar} (t_{1/2} = 1.25 \text{ billion yr})$

INMS observes more ⁴⁰Ar than would be expected from the available K in Enceladus' rock

Pure Ice: No mechanism for concentration or leeching

Water + Ice: No mechanism for leeching

Water + Ice + Rock: Leeching through water-rock interactions and concentration within the water

- Plume could also access degassing clathrate hydrate formed from ⁴⁰Ar-enriched ocean
- ⁴⁰Ar observed by INMS either not steady-state or plume activity is intermittent (<1% duty cycle)

Notable Ambiguities: CO and C_2H_4 vs. N_2 + HCN

- CO in Enceladus plume cannot be separated from that produced via impact dissociation of CO_2 (a limit of $CO + CO_2 = 5.4\%$)
- Deficiency of CO relative to comets means CO may not have been present in large quantities in the icy planetesimals or may have been hydrothermally processed
- Analysis of INMS data shows that either C_2H_4 and/or a combination of N_2 and HCN are present
- C₂H₄ is not seen in comets and unlikely to be present in large quantities in icy planetesimals
- Presence of N₂ explainable by hydrothermal processing of NH₃
- HCN rapidly hydrolyzes to formic acid and NH₃ in warm water
- Coexistence of N₂ and HCN would promote the idea of plume consisting of mixture of materials from sources experiencing different degrees of aqueous processing

Enceladus vs. Comets

	D/H	¹⁸ O/ ¹⁶ O	¹² C/ ¹³ C
Enceladus	2.9 (+1.5/-0.7) x 10 ⁻⁴	2.1 (+0.4/-0.2) x 10 ⁻³	84±13
Comets	3.1 (+0.4/–0.5) x 10 ⁻⁴ (a)	1.93±0.12 x 10 ^{−3} (a)	90±10 (b)

(a) Balsiger, H. et al. D/H and 18O/16O ratio in the hydronium ion and in neutral water from in situ ion measurements in comet Halley, *J. Geophys. Res.* **100**, 5827-5834, (1995).

(b) Wycoff, S. et al. Carbon isotope abundances in comets. Astrophys. J. 535, 991-999 (2000).

Chemical Evolution of Volatiles in the Interior?

Fischer-Tropsch Synthesis

CO or CO₂ interaction with a surface abiotically produces hydrocarbons. $2nCO + nH_2 \rightarrow [CH_2]_n + nCO_2$ $nCO + 2nH_2 \rightarrow [CH_2]_n + nH_2O$

- This process is **efficient**, **highly exothermic** ($\Delta H \sim -40$ kcal/mol), and produces alkenes and alkanes. Alkene to alkane ratio is increased when potassium is present.
- The process also efficiently converts methanol (CH₃OH) and other alcohols to hydrocarbons (generally alkanes) through similar processes.
- Can be catalyzed by iron, cobalt or certain clays.

Composition Comparison, Enceladus vs. Titan

- Enceladus Like: Fischer-Tropsch Synthesis type carbon distribution
- **Titan Like:** Gaseous photochemistry and ionneutral chemistry type carbon distribution

Elemental Abundance Comparison

Element	Titan 1050 km (Cassini-INMS)	Enceladus Plume (Cassini-INMS)	Comets II)
Н	4.6%	63-64%	54-65%
С	1.2%	3.2-3.7%	1.6-11%
Ν	94%	0.26-1.2%	0.12-0.46%
Ο	n.m.	32-33%	34%
S	n.m.	7 x 10 ⁻⁶	0.24-0.59%
Ar	6 x 10 ⁻⁶	1 x 10 ⁻⁴	n.m.

INMS detection of ice grains at Enceladus

INMS data taken during Enceladus observations frequently display sudden spikes in the signal observed for a number of mass channels indicative of volatile species.

These deviations from the gas signal profile suggest the arrival of ice grains into the closed source antechamber.

Grain Jets at Encaludus - Detection by INMS

Time from C.A. (seconds)

0.0

Enceladus Plume Density: Relation to surface sources

