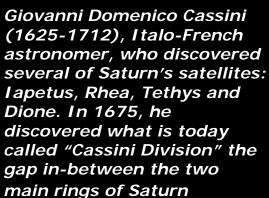
June 29, 2010

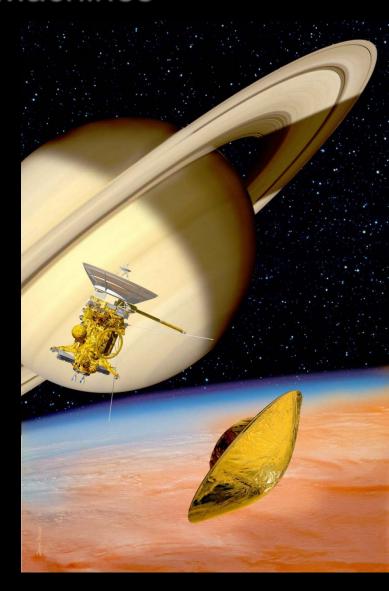
Cassini-Huygens Mission to Saturn 6th Anniversary

Mission Overview

Huygens and Cassini The Scientists and the Machines

Christiaan Huygens (1629-1695) Dutch scientist, who discovered the true


nature of Saturn's

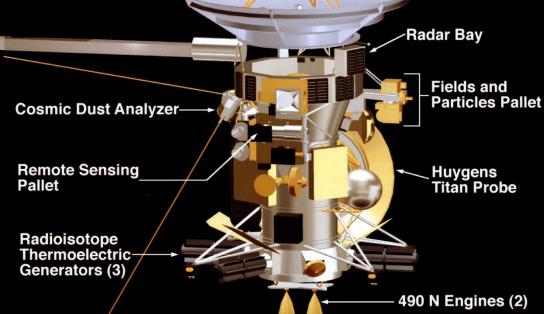

rings, and in 1655,

Titan

lapetus, Rhea, Tethys and Dione. In 1675, he discovered what is today gap in-between the two

Cassini Orbiter & Huygens Probe

Cassini Spacecraft


11m Magnetometer Boom

4m High-Gain Antenna (1of 2)

Radar Bay

Cassini Spacecraft Specs

- Height: 6.8 m (22 ft)
- Diameter: 4 m (13 ft)
- Mass: 2125 kg (2.8 tons) (fueled+probe): 5700 kg (6 tons)
- Power: 700 Watts at SOI
- .5 GB recorder
- Huygens Probe: 320 kg (~700 lbs)

Cassini Instruments:

Optical Remote Sensing (ORS)

CIRS: Composite Infrared Spectrometer

ISS: Imaging Science Subsystem

UVIS: Ultraviolet Imaging Spectrograph

VIMS: Visual and Infrared mapping Spectrometer

Microwave Remote Sensing

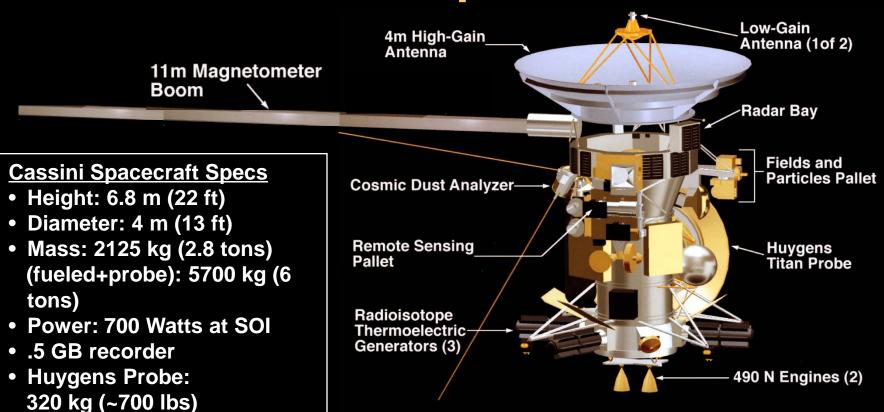
RADAR: Cassini Radar

RSS: Radio Science Subsystem

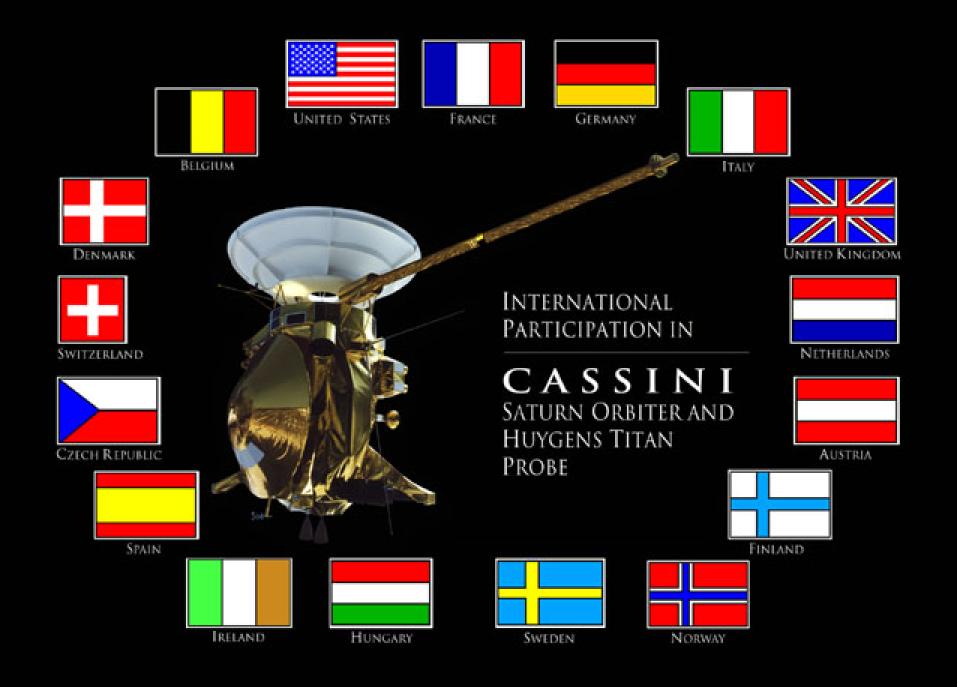
Magnetospherie and Plasma Science (MAPS)

CAPS: Cassini Plasma Spectrometer

CDA: Cosmic Dust Analyzer

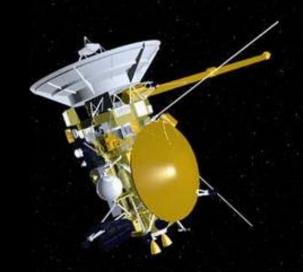

INMS: Ion and Neutral Mass Spectrometer

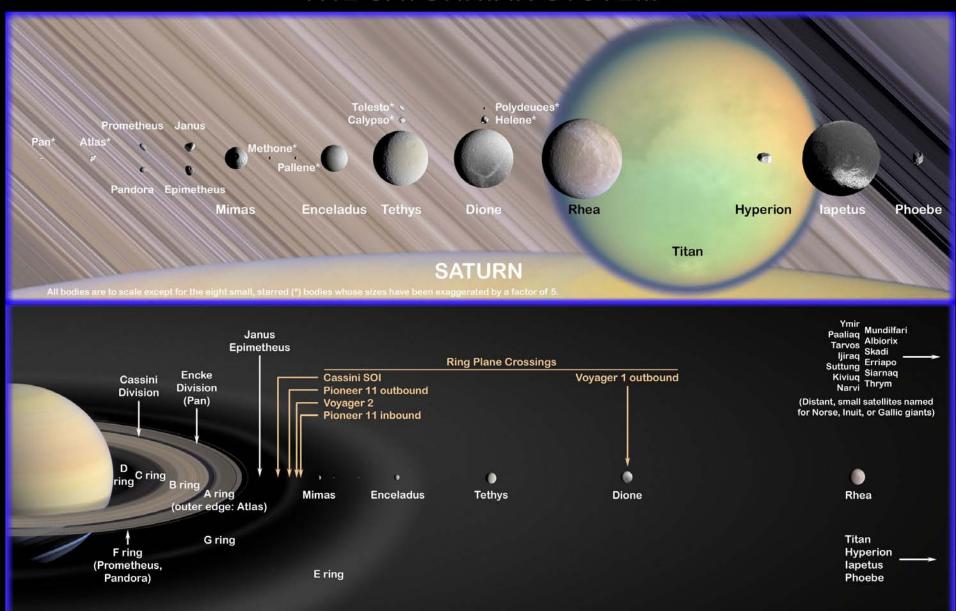
MAG: Dual Technique Magnetometer


MIMI: Magnetospheric Imaging Instrument RPWS: Radio and Plasma Wave Science

1 Wo. Itaalo alla I lasilla Wave ocicilee

Cassini Spacecraft



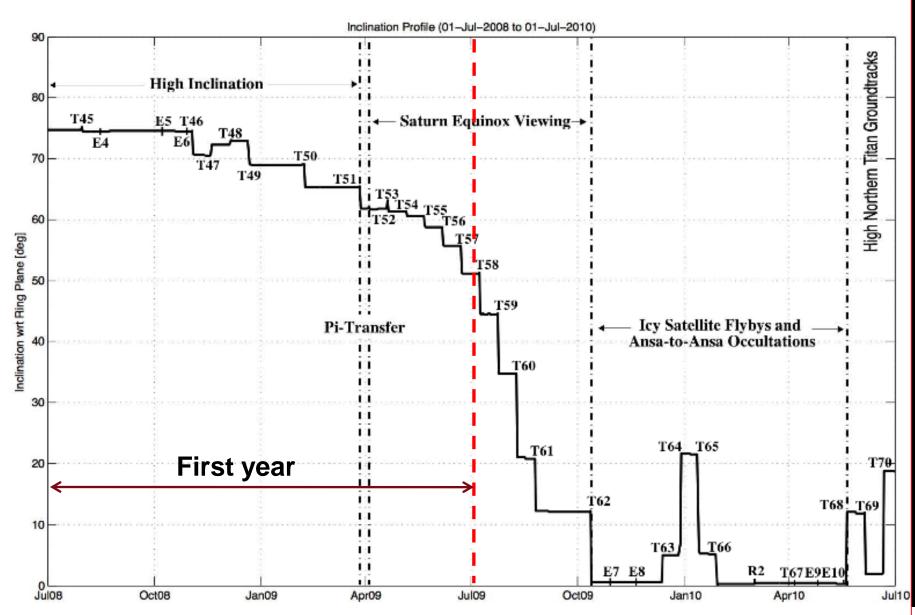


Numbers

- 1 Cassini-Huygens
- 5 Scientific disciplines
 - Saturn, Titan, Rings, Icy Satellites,
 Magnetosphere
- 18 Instruments (12 Orbiter)
- 30 Project Science Group (PSG) Executive
- ~80-100 Scientists at PSG Plenary session
- ~270 Scientists on Investigation Teams (more than half are in Europe)
 - Does not include science associates and postdocs

THE SATURNIAN SYSTEM

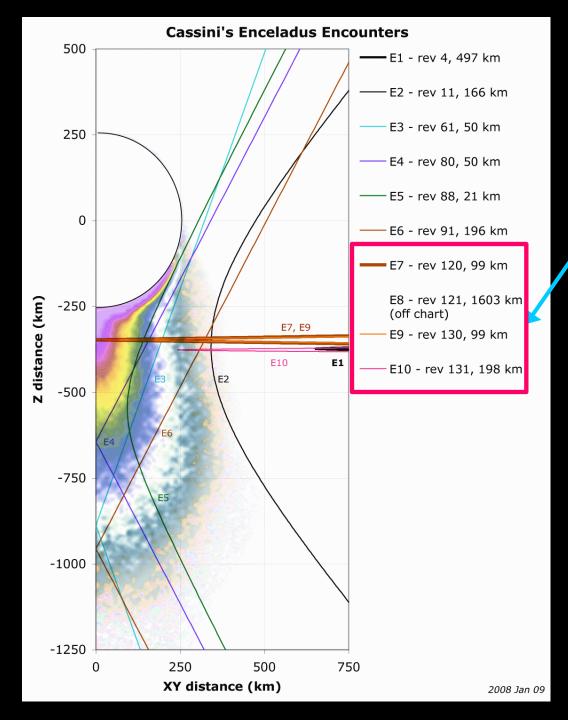
Cassini Equinox Mission Tour


- 2.25 year duration (1 July 2008 11 Oct. 2010)
 - Saturn Equinox in August 2009
- Similar in intensity to Prime Mission
- Equinox tour produces the maximum scientific return possible with Cassini-Huygens spacecraft

Equinox Mission Overview

- 26 Titan flybys
 - 7 dusk encounters, 3 high northern groundtracks, a mid-tail wake crossing, numerous "quality" RSS occultations, separate solar and earth equatorial occultations
- 7 Enceladus flybys less than 2050 km
 - 1 at 50 km, 2 at 100 km, 1 at 200 km, and the others at 340, 438 and 1600 km
- Additional Icy/Rocky satellite flybys
 - 1 Dione at 500 km (downstream wake flyby), 1 Rhea at 100 km, and 1
 Helene at 1500 km
- Three ansa-to-ansa ring/Saturn RSS occultations
- High number of mid-latitude northern hemisphere Saturn occultations, although a lack of high northern occultations.
- 5 equatorial targeted Saturn periapsis passages (i.e. no targeted/pseudo-targeted icy satellite flybys)
- 28 spacecraft orbits with inclination > 64.3 degrees (not including T44-to-T45 4:9 transfer)

Equinox Mission Inclination Profiles

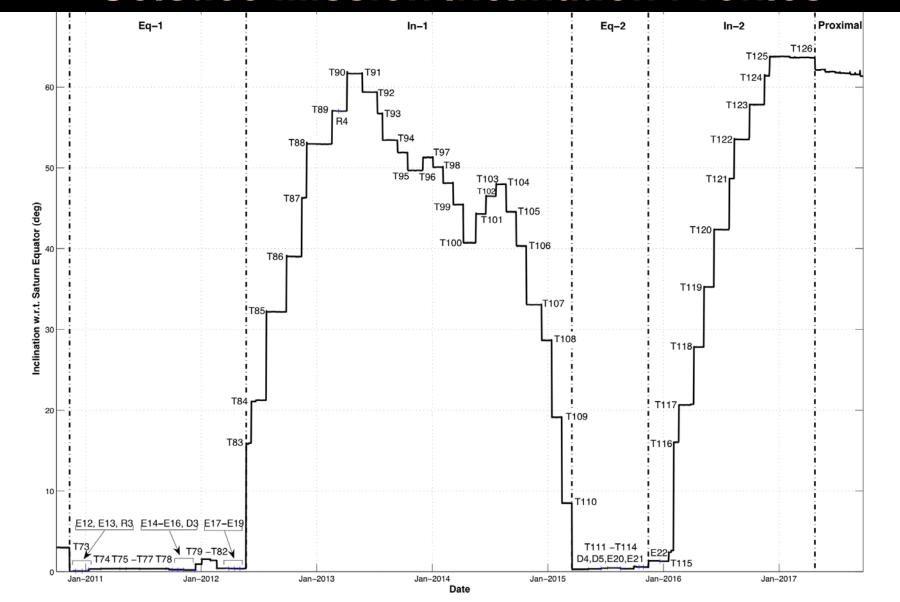

Cassini Mission Overview Four-Year Prime Tour + Two-Year Extended Mission (Proposed), July 2004 - July 2010

		Extended Mission					
Year of Tour	1	2	3	4	5	6	??
Orbits	11	15	22	27	39	21	
Titan	• • • •	•••	•••	•••	•••	•••	
1	•••	• • •	• • •	•••	• • •	• • •	N.
		•••	•••	•••	•••	•••	
			• • •	• •	• • •	•••	
		- 700	•••				
		THE "	• • •				
			•				100
Enceladus	9 9	9		0	999	999	
						0	
Other Icy Satellites	Phoebe	Tethys		() Rhea	7	Rhea	
		Hyperion		(lapetus		→ Helene	
(under 10,000 km)		Dione		Epimetheus		Dione	
1000		Telesto					
		Rhea					

Equinox Scientific Objectives

- New discoveries
 - Enceladus' plumes, Titan's complex surface
- Theoretical advances
 - Importance of Titan and Enceladus for organic chemistry
 - Dynamics of satellites imbedded in the rings
 - Satellite geophysics (e.g. lapetus ridge)
- New opportunities, temporal and spatial
 - New seasons for Saturn and Titan
 - New ring event: Equinox (August 2009) is prime opportunity for ring discoveries
 - New places to explore in Saturn's huge magnetosphere
- Address incomplete AO objectives
 - Titan Radar coverage increases from 22% to 30%
- Gather information needed for future missions
 - Spatial and temporal coverage for Titan and Enceladus

7 Enceladus flybys / E4 - E10


4 in past year

Looking ahead to the Solstice Mission!

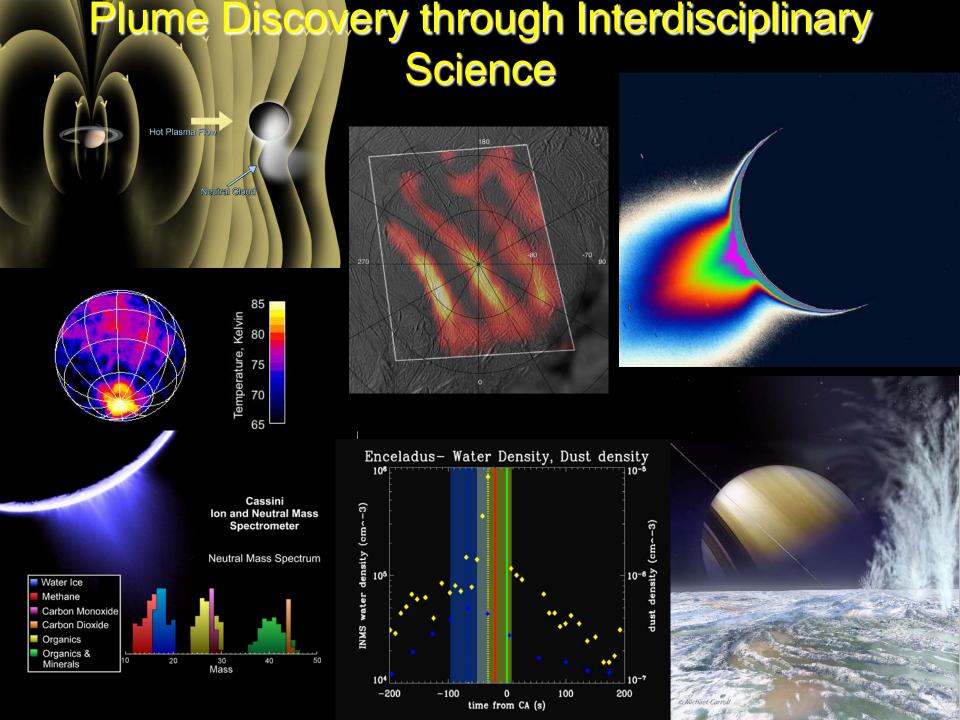
Solstice Mission Overview

- Oct 11, 2010 Sept 15, 2017
 - Cassini will be operating on a reduced budget, simplified operations plan
- Northern summer solstice: May 24, 2017
- 38 Titan flybys less than 2000 km (54 targeted flybys, T73-T126)
 - Varying geometries for ORS, RADAR and RSS occultation experiments
- 12 Enceladus flybys less than 5000 km
 - 3 at 50 km, 3 at 75 km, 1 at 100 km, and the others at 500, 1230, 1840, 2550, and 5000 km
- Additional icy satellite flybys
 - 3 Dione flybys (100 km, 475 km, and 500 km), 2 Rhea flybys (75 km, 1000 km)
- Many Saturn solar and stellar occultations at a variety of latitudes
- 4 equatorial targeted Saturn periapsis passages (i.e. no targeted/pseudo-targeted icy satellite flybys)
- 2 inclined sequences to focus on ring, magnetospheric science

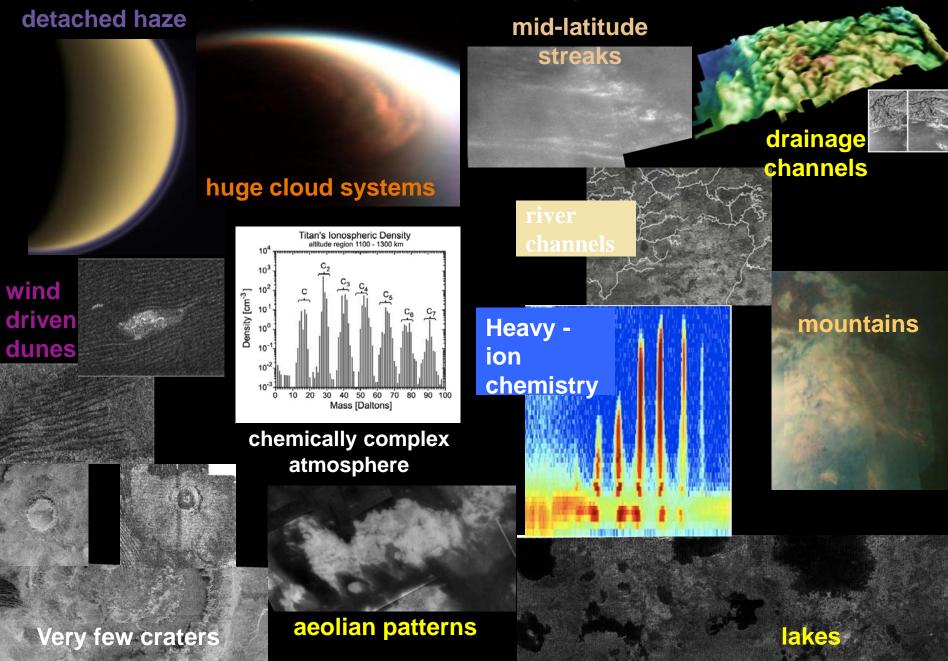
Looking ahead: Solstice Mission Inclination Profiles

	Pri	m e	Miss	i o n	Equino	x Mission	S	o I s	t i c	е	M i s	s s i	o n
Year of Tour	1	2	3	4	5	6	7	8	9	10	11	12	13
	'04-'05	'05-'06	'06-'07	'07-'08	'08-'09	'09-'10	'10-'11	'11-'12	'12-'13	'13-'14	'14-'15	'15-'16	'16-'17
Orbits	11	15	22	27	39	21	16	19	25	12	12	20	56
Titan	• •	• •											
Huygens	•												
-													
								145					
		•	• •										
							- 120						Orbita
						•	355						B 8
													03 03
		//		1111			100						D 03
			•										D D
Enceladus	66			6	0.0	00	0.0	0.0				0.0	D D
Elleciades				7		6.6		0.0					000
		250	1			0.0		0.0					0,0
			6.43					0.0					0,0
Other Icy	Phoebe	Tethys		Rhea	191	Mimas	Rhea	Dione	Rhea		Dione	Dione	D D
Satellites		Hyperion		apetus		Rhea	Helene	5000			Tethys	(2) Epimetheus	100
(under 10,000 km)		Dione	- 17	Epimetheus		Helene		Tethys				∫G arc	000
20		Telesto			. 7	Dione		Methone					3 3
		Rhea	T,			∫G arc		Telesto					Sep 18,
0.1													

Saturn (seen from Sun)


Solstice Scientific Objectives

Seasonal-temporal changes (a sampling:)


- Saturn: Observe seasonal variations in temperature, clouds, and composition in three spatial dimensions.
- Rings: Determine the production mechanisms of spokes, and the microscale properties of ring structure, by observing at the seasonally maximum opening angle of the rings near Solstice.
- MAPS: Observe Saturn's magnetosphere over a solar cycle, from one solar minimum to the next.
- Icy Satellites: Identify long-term secular and seasonal changes at Enceladus through observations of the south polar region, jets and plumes.
- Titan: Determine seasonal changes in the methane-hydrocarbon hydrological cycle: of lakes, clouds, aerosols, and their seasonal transport.

New questions (a sampling:)

- Saturn: Study the life cycles of Saturn's newly discovered atmospheric waves, south polar hurricane, and newly rediscovered north polar hexagon.
- Perform focused studies of the evolution of newly discovered "propeller" objects.
- Determine whether Dione exhibits evidence for low-level activity, now or in recent geological time.

Titan: Complex surface, atmosphere and organics

