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Outline
• Rings Tutorial: structure of the rings and 

the big picture.
• UVIS Occultation Results:

– High resolution profiles of ring structure;
– Three dimensional structure of rings;
– Waves as probes of ring properties;
– Some unexplained phenomena;
– Where things stand and where we go from 

here.
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Saturn’s Rings:
Age and origin unknown

Cassini ISS image: SSI (Boulder), 
NASA/JPL.
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Approach picture from 
Cassini:

May 10, 2004

Dist: 27 million km.

Pixel: 161 km.

Moon: Prometheus

Cassini ISS image: Space 
Science Institute (Boulder), 
NASA/JPL.

F

Cassini Division

ABC

Encke Gap
W~350 km

The main rings
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Saturn’s Rings

• Why don’t they make a moon?

Planet

Near particle feels stronger 
gravitational attraction from Saturn than 
far particle. This “tidal force” keeps the 
particles from sticking together. Further 
out, the difference is smaller so moons 
can form.
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D Ring

PIA07714
NASA/JPL/SSI
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Inner C 
Ring

Titan 1:0 Ringlet

PIA06537
NASA/JPL/SSI
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Outer C 
Ring

PIA06539

Maxwell Ringlet

NASA/JPL/SSI
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Central B 
Ring

PIA07610

Unexplained 
Structure

NASA/JPL/SSI



April 25, 2006 CHARM Presentation 11

 

Outer Edge
of B Ring, 

and Cassini
Division

 

B Ring Edge

Huygens Ringlet

NASA/JPL/SSI

PIA06536
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Outer A 
Ring and 

Encke Gap

Density Waves

Bending Wave

Encke Gap

PIA06534

NASA/JPL/SSI
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Outer 
Edge of A 
Ring and 
Keeler 
Gap

Encke Gap

Keeler Gap

Daphnis

PIA07584
NASA/JPL/SSI
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F Ring and 
Prometheus

NASA/JPL/SSI

PIA06143
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Diaphanous G Ring

PIA07643 NASA/JPL/SSI
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nceladus: Source of the E Ring

SI

8

E

NASA/JPL/S

PIA0775
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Ring Particle Orbital Dynamics
• Particles orbiting an oblate planet like Saturn 

have three natural frequencies of motion:
– Azimuthal
– Radial
– Vertical

• The time for a particle to complete a radial 
oscillation is longer than the time for it to travel 
around the planet (azimuthal) which is longer 
than the time for it to complete a vertical 
oscillation.
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κ (RL ) = mΩ(RL ) − mΩM − nνM − pκM

m, n, p are integers, M refers to the moon, and RL is the location of the 
inner Lindblad resonance. Strongest horizontal forcing when n=p=0 (no 
contribution from inclination or eccentricity of moon):

Ω(RL )

ΩM

≈
m

m −1
κ (RL ) = m[Ω(RL ) − ΩM ]

Bending waves depend on the vertical (inclined) motion of the moon. 
Strongest vertical forcing when p=0 and n=1 (no eccentricity and first order
in inclination):

mΩM +νM = mΩ(RV ) − ν(RV )
(RV )

Ω
≈

m 1

m −1

Ω

M

+

Density waves occur when the radial frequency of a ring 
particle is in resonance with the orbital motion of a moon:

Resonances and Density Waves

-ω
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More on resonances
• Strongest density wave resonances are m:m-1.
• 20:19 resonance, ring particle orbits 20 times for 

every 19 moon orbits. This is m=20 wave 
(pattern repeated 20 times around Saturn).

• Can have m=1 (1:0) resonance where orbital 
motion of moon equals precession rate of ring 
particle. Ringlet at Titan 1:0 in C ring.

• Strongest vertical resonances (produce bending 
waves) are m+1:m-1.
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Cassini ISS image: 

SSI, NASA/JPL.

Mimas m=4 
vertical (“bending”) 
and horizontal 
(“density”) waves:

Encke Gap
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Cassini ISS image: 

SSI, NASA/JPL.

A bending wave 
and a density 
(horizontal) 
wave.

Mimas 5:3 Bending
Wave

Prometheus 12:11
Density Wave
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How Resonances Make Waves
Consider a perturbation from a satellite with orbital frequency ΩM.

Following Goldreich and Tremaine (1978) and Shu (1984): In a frame 
rotating at Ω the streamline or path of a ring particle is:M

r = a 1− ecos(m[θ − ΩMt]+θ0 )[ ]
1. Gravity of satellite excites 

eccentricity of ring particles;

2. Acceleration due to satellite 
makes particles reach 
pericenter later (so 
pericenter advances to larger 
longitude);

3. This effect diminishes with 
increasing distance from 
resonance.

One orbit



April 25, 2006 CHARM Presentation 23

Streamline View of Density Wave

Planet

Unperturbed 
streamlines

m=5 streamlines
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Streamlines Perturbed by Moon

m-armed spiral
density wave
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Perturbed by Moon and Ring
Disk gravity 
exerts a torque 
on neighboring 
ring particles 
resulting in 
tighter 
wrapping of the
wave pattern.

 



April 25, 2006 CHARM Presentation 26

Sizes of Particles in the Rings
• Broad distribution of sizes in main rings 

follows a power-law: n(a)~a-q. 
• q~3 between ~1 cm and several m. Small 

particles more abundant than large 
particles.

• C, Cassini Division, F rings have more 
“dust” (sub-mm).

• G, E, and D rings are mainly dust.
• Moonlets coexist within rings.
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Abundance of cm-sized particles in A ring

RSS occultation data.
NASA/JPL

PIA07960
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Evidence for 100 m Moonlet in A Ring

NASA/JPL/SSI

PIA07791
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Composition of the Rings

• Water Ice
• And Dirt



April 25, 2006 CHARM Presentation 30

Infrared Spectrum Shows Distribution of Water Ice

PA06350 NASA/JPL/University of Arizona
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Ultraviolet Spectrum Shows Water Ice Abundance
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Rings Summary
• D, E, G rings are broad and very tenuous and 

dusty.
• Main rings: C, B, Cassini Division, A, and F

– C and Cassini Division have small particles, low 
opacity, and several gaps and narrow ringlets.

– B ring is broad, most massive, lots of unexplained 
structure;

– A ring has intermediate opacity, two gaps with known 
moons, and most observed structure are waves 
excited by moons.

– Composition mostly water ice. Dusty rings are more 
contaminated by dark material.
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The Age Problem
• The rings are bright: micrometeoroid impacts 

would darken pure ice to the present level in 
~108 years.

• The rings are spreading: collisions transport 
angular momentum outward and dissipate 
energy. Moons act as gravitational bookends, 
but evolutionary timescales are also ~108 years.

• Moons are short-lived: embedded and nearby 
moons have lifetimes against impact disruption 
of 106-109 years.
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Other Big Picture Problems

• What causes the structures on various 
scales in the rings?

• What role does limited accretion play?
• What did the rings look like 100 million 

years ago, and what will they look like in 
100 million years?
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Critical Pieces of Information

• Need to know mass of rings and size 
distribution of particles.

• Need to know energy dissipation in 
individual collisions.

• Need to know impact flux.
• Challenge is to extract this information 

from observations of the rings. Stellar 
occultations are highest resolution probes 
of ring structure and hence dynamics.
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λd

Stellar Occultation Geometry
2 ms sampling provides ~7-20 m 
resolution.
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Sig Sgr Stellar Occultation at 50 km Resolution

A Ring

B Ring

C Ring
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Janus 2:1 Density Wave Sig Sgr

100 km Surface mass density: ~60 g/cm2
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Alpha Virginis A Ring Opacities
Ingress and Egress at 10 km Resolution

Encke Gap

Cassini Division
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Prometheus 8:7 Density Wave in A Ring

Ring Plane Radius (km)

Power spectrum 
density contours

Damping length gives viscosity

Slope gives σ = 38 g/cm2Resonance
location
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Atlas 5:4 Density Wave in Cassini Division

σ = 1.6 g/cm2

10 km

Power 
spectrum 
density 
contours

Wavelet software from Torrence and Compo (1998).
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Measured Surface Mass Densities
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Density Wave Summary
• Mass of A ring ~ 4×1021 g (35 g/cm2)

equivalent moon radius ~ 100 km.
• Mass of B ring ~ 1022 g (60 g/cm2).
• Equivalent moon radius of ring system: 

Rmoon ~ 150 km
• Viscosity ~ 5 cm2/s in Cassini Division 

gives H ~ 10 m. A ring: H ~ 20-30 m.
• Lifetime of 150 km moon is ~ 1010 years at 

current epoch.
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A Ring Azimuthal Transparency Asymmetry
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A Ring Azimuthal Transparency Asymmetry

Opacity variations with azimuthal view angle.
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FUV Observation of 26 Tau (8)
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FUV Observation of Del Aqr
Occultation
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FUV Observation of Alp Leo
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Azimuthal View Angle 
Dependence on Opacity
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Stellar Occultation Variation Summary



April 25, 2006 CHARM Presentation 52

Self-Gravity “Wake” Model
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Example Model Fit to Data
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Self-Gravity Wake Properties in A Ring
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Spacing
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Region of ring observed in one sample.

Observed σ = Poisson σ Observed σ > Poisson σ

Measuring Self-Gravity Wake Sizes from Occultation Statistics

Particles << sample size. Particles (or clumps) ~ sample size.
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Expected and Measured Variance

A RingB RingC Ring
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Expected and Measured Variance

A RingB RingC Ring
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Expected and Measured Variance

A RingB RingC Ring
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Measuring 3D Structure of Clumps
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Blue represents larger clusters of particles.
Bright represents higher opacity.

100 m

Simulation: John Weiss and Glen Stewart
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Self-Gravity Wake Summary
• Self-gravity wakes are highly flattened 

(H/W~0.2) and relatively closely packed 
(Separation ~ Width).

• Inter-wake space is nearly empty (τ~0.1).
• Self-gravity wakes become less regular 

and organized in outer A ring (lower 
surface mass density).

• Auto-correlation lengths consistent with N-
body simulations.

• Strong density waves disrupt wakes.
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And now for something completely different…

Huygens Ringlet and Asymmetric 
Feature
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Huygens Ringlet and Asymmetric Feature
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