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Outline

* Rings Tutorial: structure of the rings and
the big picture.

e UVIS Occultation Results:
— High resolution profiles of ring structure;
— Three dimensional structure of rings;
— Waves as probes of ring properties;
— Some unexplained phenomena,

— Where things stand and where we go from
here.
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Saturn’s Rings:

Age and origin unknown

Cassini ISS image: SSI (Boulder),
NASA/JPL.
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Approach picture from
Cassini:

May 10, 2004
Dist: 27 million km.

Pixel: 161 km.

Moon: Prometheus

Cassini ISS image: Space
Science Institute (Boulder),
NASA/JPL.

Encke Gap

The main rings
Cassini Division



Saturn's Satellites and Ring Structure
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All bodies are to scale except for Pan, Atlas, Telesto, Calypso, and Helene, whose
sizes have been exaggerated by a factor of 5 to show rough topography.

Not shown:  Pan 2.22Rs Titan 20.3 Rs
Atlas 2.28 Rs Hyperion 24.6 Rs
Prometheus 2.31Rs Tapetus 59.1Rs
Pandora 2.35 Rs Phoebe 214.9Rs
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This graphic is available in color if required.
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Cassini

NASA/JPL/SSI
PIAO7714




Inner C
Ngle

Titan 1.0 Ringlet

NASA/JPL/SSI
PIA0O6537
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Quter C
Ring

Maxwell Ringlet

NASA/JPL/SSI

PIA06539

April 25, 2006




Central B
Ring

Unexplained
Structure

NASA/JPL/SSI
PIA07610
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Outer Edge
of B Ring,
and Cassini
Division

B Ring Edge

Huygens Ringlet

NASA/JPL/SSI
PIA06536
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Outer A
Ring and
Encke Gap

Density Waves

Bending Wave

Encke Gap

NASA/JPL/SSI

PIA06534
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Outer
Edge of A
Ring and

Keeler

Gap

Encke Gap

Keeler Gap

DETIS

NASA/JPL/SSI
PIA07584
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F Ring and
Prometheus

NASA/JPL/SSI

PI1A06143
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Diaphanous G Ring

PIAO7643  NASA/JPL/SSI
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NASA/JPL/SS

PIAO7758&




Ring Particle Orbital Dynamics

« Particles orbiting an oblate planet like Saturn
have three natural frequencies of motion:
— Azimuthal
— Radial
— Vertical

* The time for a particle to complete a radial
osclillation is longer than the time for it to travel
around the planet (azimuthal) which is longer
than the time for it to complete a vertical
oscillation.

April 25, 2006 CHARM Presentation 17



Resonances and Density Waves

Density waves occur when the radial frequency of a ring
particle is in resonance with the orbital motion of a moon:

&
s N
K(R,)=mCR,)—m,, —nv, — pK,,

m, n, p are integers, M refers to the moon, and R, is the location of the
inner Lindblad resonance. Strongest horizontal forcing when n=p=0 (no

contribution from inclination or eccentricity of moon):
Q(R,) m

k(R)=m[QR,)-Q,] )

Q. m—1

Bending waves depend on the vertical (inclined) motion of the moon.
Strongest vertical forcing when p=0 and n=1 (no eccentricity and first order

in inclination):
mQ,, +v,, = mQR,) - V(R,) =) QAURy)  mtl
Q. m—1
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More on resonances

e Strongest density wave resonances are m:m-1.

e 20:19 resonance, ring particle orbits 20 times for
every 19 moon orbits. This is m=20 wave
(pattern repeated 20 times around Saturn).

 Can have m=1 (1:0) resonance where orbital
motion of moon equals precession rate of ring
particle. Ringlet at Titan 1:0 in C ring.

e Strongest vertical resonances (produce bending
waves) are m+1:m-1.
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Mimas m=4
vertical (“bending”)
and horizontal
(“density”) waves:

Encke Gap

Cassini ISS image:
SSI, NASA/JPL.
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A bending wave
and a density
(horizontal)
wave.

Mimas 5:3 Bending
Wave

Prometheus 12:11
Density Wave

Cassini ISS image:
SSI, NASA/JPL.
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How Resonances Make Waves

Consider a perturbation from a satellite with orbital frequency Q,,.

Following Goldreich and Tremaine (1978) and Shu (1984): In a frame
rotating at Q2,, the streamline or path of a ring particle is:

r=all-ecos(m[0-Q,1]+6,)] One orbit

1. Gravity of satellite excites
eccentricity of ring particles;

2. Acceleration due to satellite
makes particles reach
pericenter later (so
pericenter advances to larger
longitude);

3. This effect diminishes with
Increasing distance from
resonance.
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Streamline View of Density Wave

Unperturbed m=5 streamlines

streamlines

Planet

o
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Sizes of Particles in the Rings

e Broad distribution of sizes in main rings
follows a power-law: n(a)~a™.

* g~3 between ~1 cm and several m. Small
particles more abundant than large
particles.

e C, Cassini Division, F rings have more
“dust” (sub-mm).

G, E, and D rings are mainly dust.
 Moonlets coexist within rings.
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Abundance of cm-sized particles in A ring

RSS occultation data.
NASA/JPL
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Evidence for 100 m Moonlet in A Ring

-
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Composition of the Rings

e \Water Ice
e And Dirt
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Infrared Spectrum Shows Distribution of Water Ice
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PA06350 NASA/JPL/University of Arizona



Mater Ice Abundance

PIAO575
NASA/JPL/University of Color%&o




Rings Summary

D, E, Grings are broad and very tenuous and
dusty.

e Main rings: C, B, Cassini Division, A, and F

— C and Cassini Division have small particles, low
opacity, and several gaps and narrow ringlets.

— B ring is broad, most massive, lots of unexplained
structure;

— A ring has intermediate opacity, two gaps with known
moons, and most observed structure are waves
excited by moons.

— Composition mostly water ice. Dusty rings are more
contaminated by dark material.

April 25, 2006 CHARM Presentation 32



The Age Problem

e The rings are bright: micrometeoroid impacts
would darken pure ice to the present level In
~108 years.

* The rings are spreading: collisions transport
angular momentum outward and dissipate
energy. Moons act as gravitational bookends,
but evolutionary timescales are also ~108 years.

 Moons are short-lived: embedded and nearby
moons have lifetimes against impact disruption
of 10°-10° years.
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Other Big Picture Problems

e \What causes the structures on various
scales In the rings?

* What role does limited accretion play?

 \What did the rings look like 100 million
years ago, and what will they look like In
100 million years?
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Critical Pieces of Information

* Need to know mass of rings and size
distribution of particles.

* Need to know energy dissipation Iin
iIndividual collisions.

 Need to know impact flux.

* Challenge is to extract this information
from observations of the rings. Stellar
occultations are highest resolution probes
of ring structure and hence dynamics.
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Stellar Occultation Geometry

2 ms sampling provides ~7-20 m
resolution.

4o



Sig Sgr Stellar Occultatlon at 50 km Resolutlon
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Janus 2:1 Density Wave Sig Sgr
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HSP Normal Optical Depth
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Cassini Optical Depth

Middle A Ring Density Waves
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Wavelength (km)
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Prometheus 8.7 Density Wave in A Ring
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Atlas 5:4 Density Wave in Cassini Division
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. Measured Surface Mass Densities -
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Density Wave Summary

« Mass of A ring ~ 4x10%! g (35 g/cm?)
equivalent moon radius ~ 100 km.

e Mass of B ring ~ 10%2 g (60 g/cm?).

 Equivalent moon radius of ring system:
R oon ~ 150 km

 Viscosity ~ 5 cm?/s in Cassini Division
gives H~10m. Aring: H ~ 20-30 m.

o Lifetime of 150 km moon is ~ 10° years at
current epoch.
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A Ring Azimuthal Transparency Asymmetry

I ' I ' ' I ' ' I I
14 - Rev 009 Alpha Leo UVIS Star Occultation ]
12 Ingress _
- - Egress .
a 10 —
m - —
O i _
8 o8l .
= I _
o i _
g 98- JNI wmm‘ .
"5 n -
E - —
04 - ]
02 -
120x%10° 125x10° 1.30x10° 135%10° 1.40x10°

April 25, 2006

Hing Plane Radius (km)

CHARM Presentation

45



A Ring Azimuthal Transparency Asymmetry
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FUV Observation of 26 Tau (8)
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FUV Observation of Del Agr
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FUV Observation of Alp

Leo
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Azimuthal View Angle
Dependence on Opacity
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Stellar Occultation Variation Summary

+: B>20 (little variation)
- 15<B<20 (some variatinn)1 10
--: B<15 (large variation) 1

Optical Depth { 7 )

0 05 1.0 15




Self-Gravity “Wake” Model

Model Parameters Affecting Measured Optical Depth

Gap Normal Optical Depth

Wake Normal Optical Depth
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Vertical Optical Depth and Gap Optical Depth

Self-Gravity Wake Properties in A Ring
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Spacing
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Measuring Self-Gravity Wake Sizes from Occultation Statistics

Particles << sample size. Particles (or clumps) = sample size.

dbséfvéd.cui ﬁdiésdnnc // Observed o > Poisson o

Region of ring observed in one sample.
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Expected and Measured Variance
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Expected and Measured Variance

Mean 1000 point bins
Variance 1000 point bins
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Measuring 3D Structure of Clumps
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Blue represents larger clusters of particles.

Bright represents higher opacity.

100 m
Simulation: John Weiss and Glen Stewart
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Self-Gravity Wake Summary

o Self-gravity wakes are highly flattened
(H/W~0.2) and relatively closely packed
(Separation ~ Width).

 Inter-wake space Is nearly empty (t~0.1).

o Self-gravity wakes become less reqular
and organized in outer A ring (lower
surface mass density).

e Auto-correlation lengths consistent with N-
body simulations.

e Strong density waves disrupt wakes.
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Huygens Ringlet and Asymmetric Feature
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