

Science Planning & Sequence Team

SATURN TARGET WORKING TEAM

Rev 58 Segment Legacy Package

Segment Boundary: February 6, 2008 – February 12, 2008 2008-037T05:06:00 – 2008-043T12:06:00 (SCET)

Integration Began 08/04/2003 Segment Delivered to S37 Sequence 08/18/2004 Lead Integrator was Shawn Boll

Legacy Package Assembled by Shawn Boll

Table of Contents

•	Seg	ment Overview and Final Products	3 - 10
	_	Summary	4
	_	Final Sequenced SPASS (Science Planning Attitude Strategy Spreadsheet)	5
	_	Final Sequenced SMT (SSR Management Tool) Reports	6
	_	Segment Geometry	7 - 9
		Overview	7 - 8
		Solar Geometry ORS Boresight Concerns	9
	-	Daily Science Highlights	10
•	Seg	ment Integration Planning	11 - 17
	_	Timeline Gaps & Suggested Observations	12
	_	Initial SMT (SSR Management Tool) Reports	13
	_	Waypoint Selection	14 - 16
		Options Considered	14
		Waypoints Chosen	15 - 16
	_	Sequence handoff Notes & Liens on sequence development/execution	17

Segment Overview and Final Products

• This was an over 6 day long segment in the Prime Mission, roughly centered about periapse, during an inclined orbit. The spacecraft approached Saturn with a view of the northern hemisphere on the lit-side. At periapse, the view was of the southern hemisphere on the dark side of the planet. By the time the segment had ended, the spacecraft again faced the lit-side, with an unobstructed view of the northern hemisphere.

• Inbound, Saturn science included UVIS aurora and VIMS north polar movies. CIRS submillimeter ring measurements and a UVIS stellar-ring occultation were also conducted.

• Near periapse, Radio Science performed both ring and atmosphere occultation experiments, INMS measured the inner magnetosphere, the ORS instruments looked at Dione, and RADAR obtained polar maps of the southern hemisphere and performed ring observations at high inclination.

• Outbound, Saturn science included VIMS cylindrical mapping and polar movies and UVIS EUV/FUV slow scans across the visible hemisphere to form spectral images. Observations of the rings and Dione were also performed. ISS looked for spoke formation in the rings.

• Because of the atmospheric component, the RSS occultation required the use of a Live Movable Block. This allowed the flight team to update the pointing vector definitions and the timing just before execution onboard, using the most recent trajectory information.

Final Sequenced SPASS

	Request	Riders	Start (SCET)	Start (Epoch)	Duration	End (SCET)	Primary	Secondary	Comments
	Sequence S037, length = 26		2008-022T13:35:00	E057_SEQUENCE_037+000T00:00:00	024T22:16:00	2008-047T11:51:00			
	SATURN rev 58 Segment		2008-037T05:06:00		006T07:00:00	2008-043T12:06:00			
	SP_058SA_WAYPTTURN037_PRIME		2008-037T05:06:00		000T00:30:00	2008-037T05:36:00	ISS_NAC to Saturn	NEG_Z to NSP	
	NEW WAYPOINT		2008-037T05:36:00		002T10:34:00	2008-039T16:10:00	ISS NAC to Saturn	NEG Z to NSP	
Gan 1	UVIS 058SA NAURMOV001 PRIME	C, V	2008-037T05:36:00		000T13:00:00	2008-037T18:36:00	UVIS EUV to Saturn	NEG Z to NSP	
Oup 1	CIRS 058RI SUBMU35LP001 PRIME	С. М	2008-037T18:36:00		000T08:00:00	2008-038T02:36:00	CIRS FP1 to Rings	NEG Z to NSP	
	NAV 058SK OPNAV381 PRIME	M, N	2008-038T02:36:00		000T00:59:00	2008-038T03:35:00	ISS NAC to Satellites	NEG Z to NSP	Starts at waypoint, ends at Earth point
	NAV 058EA DLTURN381 PRIME	М	2008-038T03:35:00		000T00:01:00	2008-038T03:36:00	XBAND to Earth	POS X to NEP	
	CDS will normalize AACS A8		2008-038T03:36:00		000T09:00:00	2008-038T12:36:00			
	SP 058EA G34HEFOTB038 PRIME	C, M, N	2008-038T03:36:00		000T09:00:00	2008-038T12:36:00	XBAND to Earth	POS X to NEP	
	SP 058SA WAYPTTURN038 PRIME	M	2008-038T12:36:00		000T00:30:00	2008-038T13:06:00	ISS NAC to Saturn	NEG Z to NSP	20 min. turn
	ISS 0580T RETMDRESA008 PRIME	С. М	2008-038T13:06:00		000T02:24:00	2008-038T15:30:00	ISS NAC to Retargetable	PIC	
Gan 2	VIMS 058SA REGPOLMOV001 PRIME	С. М	2008-038T15:30:00		000T01:50:00	2008-038T17:20:00	ISS NAC to Saturn	NEG Z to North Pole Dir	
Jap 2	UVIS 058ST URBETLUP001 PRIME	C. M. R. U	2008-038T17:20:00		000T02:06:00	2008-038T19:26:00	UVIS FUV to 244.633/-43.134	NEG Z to NSP	
	VIMS 0585A REGPOLMOV002 PRIME	M. R. U	2008-038T19:26:00		000T02:55:00	2008-038T22:21:00	ISS NAC to Saturn	NEG Z to NSP	
	SP 058EA DI TURN038 PRIME	C. M. R	2008-038T22:21:00		000T00:30:00	2008-038T22:51:00	XBAND to Earth	POS X to NEP	19 min. turn
	CDS will normalize AACS A8		2008-038T22:51:00		000T06:00:00	2008-039T04:51:00			
	SP 058EA M34BWGRSS038 PRIME	C. F. M. R	2008-038T22:51:00		000T06:00:00	2008-039T04:51:00	XBAND to Earth	POS X to NEP	
	SP 058SA WAYPTTURN039 PRIME	C. M	2008-039T04:51:00		000T00:30:00	2008-039T05:21:00	ISS NAC to Saturn	NEG Z to NSP	17 min. turn
	CIRS 058RI SUBRADARU001 PRIME	CMR	2008-039T05-21-00		000T10:04:00	2008-039T15:25:00	CIRS EP1 to Rings	POS X to 125 0/-60 0	
	SP 058EA WAYPTTLIEN439 DRIME	C R	2008-039T15:25:00		000T00:30:00	2008-039T15:55:00	XBAND to Earth	NEG X to Saturn	1st Part of 2-part turn
	SP 058EA WAYPTTURN539 PRIME	R	2008-039T15:55:00		000T00:15:00	2008-039T16:10:00	XBAND to Earth	NEG X to NEP	2nd part of 2-part turn
	NEW WAYPOINT	IX	2008-039716-10-00		000105-50-00	2008-0391222-00-00	XBAND to Earth	NEG X to NEP	2nd part of 2 part tan
	SP 058NA DEADTIME030 PRIME		2008-039716:10:00		000700-14-57	2008-030116:24:57	XBAND to Earth	NEC X to NEP	
	RSS 058RI OCC002 RRIME	м	2008-020716-24-57	IMB E058 SATURN RSS OCC 1 ECR-000T01:57:59	000T01.05.00	2008-039717-20-57	XBAND to Earth	NEC X to NER	
	RSS_058SA_OCC002_PRIME	M	2008-039T17:29:57	LMB_E058_SATURN_RSS_OCC_1_EGR-000T00:52:59	000T01:03:00	2008-039T17:29:57	YBAND to Earth	NEG X to NEP	
	SP 058NA DEADTIME439 PRIME	P	2000 039117.29.37	LMB_E058_SATURN_RSS_OCC_1_E0R+000T00:35:03	000101.20.00	2000 039110.37.37 2008-039T19-13-00	XBAND to Earth	NEG_X to NEP	
	VIMS 05201 DIONE001 DRIME	CIRU	2008-039110-37-39	LMB_E038_SATURN_R35_OCC_1_EGR+000100.33.03	000100.13.01	2008-020720-15-00	ISS NAC to Diope	NEC X to North Role Dir	TRD
	Perippeo P = 2.2 Pc lat =	C, I, K, O	2008-020710-22:52		000101.01.00	2008-039120.13.00			186
	TNMC OFFCA TNMACCOMPOSI DRIME	C P	2008-039119.22.33		000100.00.01	2008-039119.22.34	NEC X to Duct RAM	DIC	Attempt to accommodate MAC by pointing
	INMS_0565A_INMAGCOMPOUL_PRIME	C, K	2008-039120.13.00		000101.30.00	2008-039121.45.00	NEG_X to bust_roam	PIC	to orientation that keeps D field in their
									Eov
	CD OFRCA WAYDTTURNEDO DRIME	0	2008 020721:45:00		000700-15-00	2008-020722100100	ICC NAC to Catura	DOC 7 to NCD	F0V.
Gan 3		IX	2000 039121.45.00		002714-26-00	2008-042712-26-00	ISS_NAC to Saturn	POS_Z to NSP	
Jap 5	RADAR OFREA 2001 AROA1 DRIME	м	2008-039122.00:00		000114-00:00	2008-040705:00:00	NEC 7 to Saturn	NEC X to Sup	RADAR must control primany and secondary
	RADAR_0383A_2POLAR001_PRIME	IM .	2008-039122.00.00		000108.00.00	2008-040100.00.00	NEG_2 to Saturn	NEG_X to Sun	aves to obtain correct polarization
									axes to obtain correct polarization.
	VINE OFREA CYLMADOO1 DRIME	M	2008 040706:00:00		000707:00:00	2008 040712:00:00	ICC NAC to Catura	DOG 7 to NCD	
	UNITE OF OF UPCAMENCOOF DRIME	M, U	2008-040100.00.00		000107.00.00	2008-040715:00:00	155_NAC to Saturn		
	CIRC 0E2RI TEMPL16L0001 DRIME	C, M R	2008-040113:00:00		000103:00:00	2008-040118:00:00	CIPS_ED1 to Pings	DOG 7 to NGD	
		C, M, K	2008-040110.00.00		000102.00.00	2008-040718.00.00	CIRS_FP1 to Kings		Will accommodate other OPC instruments
		C, I, M, R, U, V	2008-040118:00:00		000101:00:00	2008-040119:08:00	CIRS_PPB to Dione		10 min accontinuate other OKS instruments.
	SP_US8EA_DLTURNU4U_PRIME	С, М, К	2008-040119:06:00		000100:30:00	2008-040119:38:00	XBAND to Earth	NEG_X TO NEP	18 mm. turn
	CDS WIII NORMAIIZE AACS A8	C M D	2008-040119:36:00		000109:00:00	2008-041104:36:00	VDAND to Fasth	NEC Y to NED	
	SP_058EA_MI/UMETRSS040_PRIME	C, M, K	2008-040119:36:00		000109:00:00	2008-041704:38:00	ABAND to Editit	NEG_X to NEP	10 min hum
Con 1	SP_058SA_WATPTTURN041_PRIME	M	2008-041104:36:00		000100:30:00	2008-041105:06:00	ISS_NAC to Saturn	POS_Z to NSP	18 min. turn
Jap 4	VIMS_0585A_REGPOLMOV003_PRIME	M, U	2008-041105:06:00		000111:00:00	2008-041116:06:00	ISS_NAC to Saturn	POS_2 to North_Pole_Dir	T 1 D 400 0001 1 (1 7001
	VIMS_058RI_RPXMOVIE001_PRIME	С, І, М	2008-041116:06:00		000103:30:00	2008-041119:36:00	VIMS_IK to Kings	PUS_2 to NSP	Target R ~ 120,000 km, left ansa. ISS to
			2000 044740 26:00		000 7 07 00 00	2000 042702 26 00			ride along.
	OVIS_058SA_EUVFUVUU1_PRIME	6	2008-041119:36:00		000107:00:00	2008-042102:35:00	WIND to Saturn	NEC X to NED	
	SP_US8EA_DLTURNU42_PRIME	0	2008-042102:36:00		000100:30:00	2008-042103:06:00	XBAND to Earth	NEG_X TO NEP	
	SP_US8EA_G34BWGNON042_PRIME	C	2008-042103:06:00		000109:00:00	2008-042112:06:00	XBAND to Earth	NEG_X TO NEP	10 min hum
ComF	SP_0585A_WAYPTTURN042_PRIME	G. M. H.	2008-042112:06:00		000100:30:00	2008-042112:36:00	ISS_NAC to Saturn	POS_Z to NSP	18 min. turn
Gap 5	VIMS_US8SA_REGPOLMOVUU4_PRIME	C, M, U	2008-042112:36:00		000111:00:00	2008-042123:36:00	ISS_NAC to Saturn	POS_Z to North_Pole_Dir	
	ISS_058KI_SPKFORM001_PRIME	С, М	2008-042123:36:00		000103:00:00	2008-043102:36:00	ISS_NAC to Kings	PIC	
	SP_US8EA_DLTURNU43_PRIME	С, М	2008-043102:36:00		000100:20:00	2008-043102:56:00	ABAND to Earth (0.0,0.0,-30.0 deg. offset)	POS_X to NEP	1st part of 2-part turn
	SP_US8EA_DLTURN443_PRIME	С, М	2008-043102:56:00		000100:10:00	2008-043103:06:00	XBAND to Earth	POS_X to NEP	2nd part of 2-part turn
	COMPTER ODAS DOTAT	10 00			100000000000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	INTROPHY TO LOTTO	WIN Y TO NED	

Final Sequenced SMT and Data Volume

Saturn 58 Legacy

DATA VOLUME SUMMARY --- TRANSFER FRAME OVERHEAD INCLUDED (80 BITS PER 8800-BIT FRAME)

					OBSI	ERVATI	ON_PER:	IOD		DOWNLINK_PASS										
				P4 P5 								D 	PLAYBACK							
DOWNLINK PASS NAME	Start doy hh:m	End m doy hh:mm	START (Mb)	SCI (Mb)	HK+E (Mb)	TOTAL (Mb)	CPACT (Mb)	(MRGN	 OPNAV (Mb)	- S (SCI EN (Mb) (M	 IGR T(Ib)	DTAL (Mb)	CPACTY (Mb)	MARGN (Mb)	NET_ (Mb)	MARGN (%)	CAROVR (Mb)		
SP_058EA_G34HEFOTB038_PRIMI SP_058EA_M34BWGRSS038_PRIMI SP_058EA_M70METRSS040_PRIMI SP_058EA_G34BWGNON042_PRIMI SP_058EA_G70METSEQ043_PRIMI	E 038 03:3 E 038 22:5 E 040 19:3 E 042 03:0 E 043 03:0	6 038 12:36 1 039 04:51 6 041 04:36 6 042 12:06 6 043 12:06	0 340 736 0 1473	1140 760 2268 1958 1826	95 43 164 95 63	1235 1143 3168 2053 3362	3491 3491 3491 3491 3491 3491	2257 2348 323 1438 129	18 0 0 0 0	2 1 11 3 7	231 5 .73 3 .50 5 .21 5 .21 5 .216 5	3 15 5 13 3 43 3 24 3 41	536 351 372 427 131	1196 616 4400 954 4509	-340 -736 28 -1473 378	157 157 157 129 312	19 19 19 19 19 29	8 340 8 736 8 0 8 1473 8 0		
DATA VOLUME REPORT TRAN	ISFER FRAME	OVERHEAD NOI	INCLU	DED																
Event	Start doy hh:mm	End doy hh:mm	CAPS (Mb)	CDA (Mb)	CIRS (Mb)	5 IN1) (M)	MS] b) (N	Ib) (1	MAG MI Mb) (1	IMI Mb)	RADAR (Mb)	RPWS (Mb)	UVI (Mb	S VI) (M	MS PR b) (OBE Mb)	ENGR (Mb)	TOTAL (Mb)		
OBSERVATION_NOR OBSERVATION_OPN OBSERVATION_SI SB_059EA_C24HEEOTB038_DDIME	037 05:06 037 05:06 037 05:06 038 03:26	038 03:36 038 03:36 038 03:36 038 03:36	81.0 0.0 0.0	12.1 0.0 0.0	302.4 0.0 18.5	4 4 0 0 5 0	.1 (.0 17 .0 (0.0 4 7.4 0.0	8.6 8 0.0 (0.0 (1.3 0.0 0.0	0.0 0.0 0.0	106.1 0.0 0.0	235.	5 240 0 0 0 0	.0 .0 .0	0.0 0.0 0.0	18.4 1 0.0 0.0	1129.5 17.4 18.5		

SP 058EA G34HEFOTB038 PRIME 038 03:36 038 12:36 32.4 42.4 2.5 228.0 DAILY TOTAL SCIENCE 037 05:06 038 12:36 113.4 17.0 407.3 5.7 0.0 68.0 120.2 0.0 148.6 238.0 240.0 0.0 OBSERVATION NOR 038 12:36 038 22:51 36.9 5.8 81.4 1.8 192.0 22.1 44.3 0.0 48.3 67.4 250.0 0.0 8.4 758.5 0.0 OBSERVATION SI 038 12:36 038 22:51 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 0.0 3.0 0.0 0.0 0.0 SP 058EA M34BWGRSS038 PRIME 038 22:51 039 04:51 21.6 4.3 75.6 1.1 0.0 13.0 25.9 0.0 28.3 1.6 0.0 0.0 0.0 171.4 DAILY TOTAL SCIENCE 038 12:36 039 04:51 58.5 10.1 157.0 2.9 192.0 35.1 70.2 0.0 76.6 72.1 250.0 0.0 135.3 OBSERVATION NOR 039 04:51 040 19:36 139.5 67.1 287.4 14.8 190.0 155.1 87.6 660.4 128.7 355.0 0.0 31.7 2252.5 OBSERVATION SI 039 04:51 040 19:36 0.0 0.0 27.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 27.0 SP 058EA M70METRSS040 PRIME 040 19:36 041 04:36 233.1 17.0 86.4 1.6 0.0 19.4 38.9 0.0 740.7 2.5 0.0 0.0 0.0 1139.5 DAILY TOTAL SCIENCE 039 04:51 041 04:36 372.6 84.0 400.8 16.4 190.0 154.7 194.0 87.6 1401.0 131.1 0.0 355.0 246.1 42.6 212.0 48.6 OBSERVATION NOR 041 04:36 042 03:06 64.8 4.1 116.2 0.0 654.5 171.6 379.6 0.0 18.4 1958.5 SP 058EA G34BWGNON042 PRIME 042 03:06 042 12:06 94.6 15.4 86.4 1.6 0.0 19.4 58.3 0.0 42.4 0.0 0.0 0.0 0.0 318.2 DAILY TOTAL SCIENCE 041 04:36 042 12:06 58.0 151.2 696.9 340.7 5.7 212.0 68.0 174.5 0.0 171.6 379.6 0.0 25.6 562.5 72.1 OBSERVATION NOR 042 12:06 043 03:06 251.2 208.8 4.1 97.9 0.0 292.6 44.8 250.0 0.0 12.3 1821.9 SP 058EA G70METSEQ043 PRIME 043 03:06 043 12:06 191.8 15.4 86.4 3.2 0.0 64.0 54.2 0.0 291.6 2.5 0.0 0.0 0.0 709.1

7.4

6

562.5 136.1 152.1

0.0

584.2

47.3

250.0

S. Boll

DAILY TOTAL SCIENCE

443.0

41.0 295.2

042 12:06 043 12:06

11/30/2017

0.0

Segment Geometry (1 of 2)

Saturn 58 Legacy

View of SATURIN FT 2006 FEB 06 05:0 14.0° field of view Ro	om CASSINI 16:00 UTC	N	P			SATURN		÷V		- Us	-Z	Rev 058 IX 2008 -E 037 2008 FED 66 2008 FED 66 2008 FED 66 Periapse 05 Periapse 05 Light time: Orbit peria Rad.us 1 Z.ht.cyl Mag.L Semi_axs 1 Eccentricit Inclination Sun_range Earth range Earth range Canberra Madrid	BOUND TO5:06: i 05:06: i 06:15: i8 + 003 i8 + 002 i69. od: 12. i397935 i152280 791501 34. 010739 vy 0. 47. 9. 8. 8. 107.	00 SCET 19 ERT T08:57:4 T14:18:0 3 min 0 days km km 805 00 deg 27 AU 34 AU L U/I 4 13:5 6 -65:0 0 49:4 TION INE	16 15 19,12 Rs 13,13 Rs 16,77 Rs
Solidi System Simu Point NEG_Y User vector - RA:	-V -V -	RN Tilt L	 and all Up Reset 	gn POS	X C	SEP • Up Zoom	o e	with ()	NSP Labels	: ☑ Axe	© s	Year	14. -170. -29. 2. 160. gle 128. gle 127.	0 deg 2 550 deg 014 deg 000 Rs 068 deg 166 deg 6 deg 4 •	Hour
Paste Current I	RA/DEC	✓ Imag	e Down	 ⊡ ⊡_ H	Res	Zool	m In)	FOV	's	✓ vec	lons	Day 4		4 1	Secon
Turn analyzer: SAT	URN	to EA	RTH	0 ab	out Z	٥ (on RWA	;	0) =	12.7 min	/ <mark>1</mark> 30.4 c	leg	Even	4 1	1
S/C S BODY OCC? O	ATRAI CC? (km)	NGE(Rs)	ALTI1 (km)	UDE(Rs)	PHASE (deg)	ANGLR_I (deg	DIAMETER mrad)	SUB_LON	_s/c LAT	ALON (deg)	VREL (km/s)	Z_HGHT (km)	AN	GLEF EARTH	ROM RAM
SATURN	1397935	23.20	1339506	22.23	51.2	4.94	86.25	298	34	0	4.1	0	0.0	130.4	47.1
(IMAS	1370562	22.74	1370367	22.74	47.9	0.02	0.30	263	34	-74	10.5	-2854	7.6	133.5	54.4
NCELADUS	SE 1577058	26.17	1576804	26.16	45.2	0.02	0.33	340	30	-151	13.5	-11	6.0	136.3	49.3
STHYS	1594347	26.45	1593812	26.45	52.4	0.04	0.68	34	29	139	15.3	5016	8.4	129.4	38.8
IONE	1721518	28.56	1720955	28.56	46.2	0.04	0.66	200	27	177	12.8	65	7.1	135.5	43.8
IEA	1389745	23.06	1332932	23.05	93.2	0.06	3.94	285	35	-76	4.8	2328	21.8	137.6	36.4
VPERTON	1451099	24.09	1450949	24.07	66.5	0.01	0.23	197	41	-50	1.0	19937	68 6	112.5	115.7
APETUS	3185963	52.86	3185218	52.85	140.4	0.03	0.47	24	15	47	5.9	-845871	90.8	41.5	72.7
HOEBE	14580867	241.93	14580757	241.93	72.3	0.00	0.02	76	-20	-71	5.4	6931107	115.2	105.1	142.9
ATURN	1397935	23.20	1339506	22.23	51.2	4.94	86.25	298	34	0	4.1	0	0.0	130.4	47.1

	Saturn Range	Phase Angle	Sub-S/C Lat.
Segment Start	23.20	51.2	34
Periapse	3.28	149.8	-20
Segment End	27.16	19.4	11

Seg Start (Left)

Segment Geometry (2 of 2)

Saturn 58 Legacy

Saturn 58 Legacy

There likely were ORS Boresight Solar Constraints on Science Pointing during periapse, but by performing an Earth-pointed RSS occultation, no CMT management was required.

Wednesday, Feb. 6 (DOY 037):

The Ultraviolet Imaging Spectrometer (UVIS) observed Saturn's northern aurora and the Composite Infrared Spectrometer (CIRS) performed radial scans of main rings to obtain submillimeter measurements.

Thursday, Feb. 7 (DOY 038):

The Visual and Infrared Mapping Spectrometer (VIMS) recorded polar movies and UVIS observed a stellar occultation of the rings.

Friday, Feb. 8 (DOY 039):

CIRS began with sub-millimeter ring measurements. Radio Science (RSS) then performed both ring and Saturn Earth-occultations as the spacecraft sped toward a periapsis distance of 3.3 Saturn radii. VIMS turned the spacecraft's attention to Dione, with the other optical remote sensing (ORS) teams riding along. Following periapsis passage, the Ion and Neutral Mass Spectrometer (INMS) wielded rare - for them - spacecraft pointing control to measure inner magnetospheric composition. Finally, the RADAR instrument began an effort to obtain a polar map of the southern hemisphere, while taking rings observations at high inclination.

Saturday, Feb 9 (DOY 040):

RADAR wrapped up its polar mapping and VIMS began cylindrical mapping of Saturn. UVIS observed another occultation of a star by the rings. CIRS took temperature measurements of the rings and led a joint ORS observation of Dione. Magnetospheric and Plasma Science (MAPS) teams continued imaging the dynamics of the inner magnetosphere.

Sunday, Feb. 10 (DOY 041):

VIMS conducted more polar observations and viewed the rings as the spacecraft crossed the ring plane. UVIS performed slow scans across Saturn's visible hemisphere to form spectral images.

Monday, Feb. 11 (DOY 042):

Science today involved VIMS taking the lead with the other ORS teams riding along in an effort to gain more Saturn polar coverage. Imaging Science (ISS) took a look at spoke formation in the rings, while MAPS teams continued their measurements of the dynamics of the inner magnetosphere.

Segment Integration Planning

Timeline Gaps and Suggested Observations

Saturn 58 Legacy

Rev 58 - TOL

Activity	Start	Duration	Pointing	Notes	TLM
Segment Start/SPTurn to Waypoint	2008-037T05:06:00	00:30:00			
New Waypoint	2008-037T05:36:00	D			
OPEN Gap 1	2008-037T05:36:00	21:00:00			
OPNAV and NAV DLTURN	2008-038T02:36:00	01:00:00			
Downlink	2008-038T03:36:00	09:00:00	XBAND to Earth;	Goldstone 34 HEF	
SP Turn to Waypoint	2008-038T12:36:00	00:30:00			
open Gap 2	2008-038T13:06:00	06:15:00			
SP Turn to Downlink	2008-038T19:21:00	00:30:00	XBAND to Earth;		
Downlink	2008-038T19:51:00	09:00:00	XBAND to Earth;	Madrid 34 HEF	
SP Turn to Waypoint	2008-039T04:51:00	00:30:00			
CIRS Rings SUBRADAR	2008-039T05:21:00	10:04:00			
SP Turn to Waypoint	2008-039T15:25:00	00:30:00	XBAND to Earth;		
New Waypoint	2008-039T15:55:00	D	XBAND to Earth;		
SP Deadtime	2008-039T15:55:00	00:15:00			
RSS Occultation	2008-039T16:10:00	02:33:00		MAG ctrl sec. X-axis 45 deg of B-field	
SOST Dione (VIMS Prime?)	2008-039T18:43:00	01:00:00			
SP Deadtime	2008-039T19:43:00	00:15:00			
INMS	2008-039T19:58:00	01:30:00			
SP Waypoint Turn	2008-039T21:28:00	00:30:00			
New Waypoint	2008-039T21:58:00	D	ISS_NAC to Saturn;		
OPEN Gap 3	2008-039T21:58:00	21:08:00			
SP Turn to Downlink	2008-040T19:06:00	00:30:00	XBAND to Earth;		
Downlink	2008-040T19:36:00	09:00:00	XBAND to Earth;	Madrid 70 MET	
SP Turn to Waypoint	2008-041T04:36:00	00:30:00			
open Gap 4	2008-041T05:06:00	21:00:00			
OPNAV and NAV DLTURN	2008-042T02:06:00	01:00:00			
Downlink	2008-042T03:06:00	09:00:00	XBAND to Earth;	Goldstone 34 BWG	
SP Turn to Waypoint	2008-042T12:06:00	00:30:00			
OPEN Gap 5					
SP Turn to Downlink	2008-043T02:36:00	00:30:00	XBAND to Earth;		
Downlink	2008-043T03:06:00	09:00:00	XBAND to Earth;	Goldstone 34 BWG	

First Look During Integration:

DATA VOLUME SUMMARY

		OBSERVA	TION_PERI	DD							I			DOWN	ILINK_PAS	SS	
				P4			 P5	RECO	ĺ								
DOWNLINK PASS NAME		Start doy hh:mm	End doy hh:mm	START (Mb)	SCI (Mb)	HK+E (Mb)	TOTAL (Mb)	CPACTY (Mb)	MAR (Mb)	GIN (%)	OPNAV (Mb)	SCI (Mb)	ENGR (Mb)	TOTAL (Mb)	CPACTY (Mb)	MARGIN C (Mb) (%)	AROVR (Mb)
SP_058EA_G34HEFOTB038_	PRIME	038 03:36	038 12:36	0	890	78	968	3534	2566	73%	17	229	53	1267	1215	-52 -4%	52
SP_058EA_M34HEFNON038		038 22:51	039 04:51	52	573	36	660	3568	2908	82%	0	171	35	867	718	-149 -21%	149
SP_058EA_M70METNON040 SP_058EA_G34BWGNON042		= 040 19:36 = 042 03:06	041 04:36	149	2523 841	135 78	2807 919	3568	762 2614	21% 74%	17	230	53 53	3090 1206	4117	-205 -21%	205
SP_058EA_G34BWGNON043	PRIM	E 043 03:06	043 12:06	205	1612	52	1870	3569	1699	48%	0	714	53	2637	1001	-1636 -163%	1636

DATA VOLUME REPORT

Event	Start doy hh:mm	End doy hh:mm	CAPS (Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	ENGR (Mb)	TOTAL (Mb)
OBSERVATION_NOR OBSERVATION_OPN OBSERVATION_SI SP_058EA_G34HEFOTB038_PRIME	037 05:06 037 05:06 037 05:06 038 03:36 037 05:06	038 03:36 038 03:36 038 03:36 038 12:36 038 12:36	81.0 0.0 0.0 32.4	12.1 0.0 0.0 4.9	302.4 0.0 18.5 86.4	4.1 0.0 0.0 1.6	0.0 17.4 0.0 0.0	48.6 0.0 0.0 19.4	81.3 0.0 0.0 38.9	0.0 0.0 0.0 0.0	106.1 0.0 0.0 42.4	235.5 0.0 0.0 2.5 238.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	871.1 17.4 18.5 228.5
OBSERVATION_NOR SP_058EA_M34HEFNON038_PRIME DAILY TOTAL SCIENCE	037 05:06 038 12:36 038 22:51 038 12:36	038 12:50 038 22:51 039 04:51 039 04:51	36.9 21.6 58.5	5.8 4.3 10.1	0.0 75.6 75.6	5.7 1.8 1.1 2.9	0.0 192.0 0.0 192.0	22.1 13.0 35.1	44.3 25.9 70.2	0.0 0.0 0.0 0.0	48.3 28.3 76.6	238.0 71.4 1.6 73.0	150.0 0.0 150.0	0.0 0.0 0.0 0.0	0.0 0.0	572.7 171.4
OBSERVATION_NOR OBSERVATION_SI SP_058EA_M70METNON040_PRIME DAILY TOTAL SCIENCE	039 04:51 039 04:51 040 19:36 039 04:51	040 19:36 040 19:36 041 04:36 041 04:36	139.5 0.0 32.4 171.9	28.4 0.0 6.4 34.9	247.2 27.0 86.4 360.6	14.8 0.0 1.6 16.4	222.0 0.0 0.0 222.0	136.0 0.0 19.4 155.5	155.1 0.0 38.9 194.0	197.9 0.0 0.0 197.9	741.5 0.0 42.4 783.9	88.8 0.0 2.5 91.3	525.0 0.0 0.0 525.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0	2496.3 27.0 230.1
OBSERVATION_NOR OBSERVATION_OPN SP_058EA_G34BWGNON042_PRIME DAILY TOTAL SCIENCE	041 04:36 041 04:36 042 03:06 041 04:36	042 03:06 042 03:06 042 12:06 042 12:06	81.0 0.0 32.4 113.4	16.4 0.0 4.9 21.2	0.0 0.0 86.4 86.4	4.1 0.0 1.6 5.7	0.0 17.4 0.0 0.0	48.6 0.0 19.4 68.0	87.7 0.0 29.2 116.9	0.0 0.0 0.0 0.0	106.1 0.0 42.4 148.6	117.7 0.0 0.0 117.7	379.6 0.0 0.0 379.6	0.0 0.0 0.0 0.0	0.0 0.0 0.0	841.2 17.4 216.3
OBSERVATION_NOR SP_058EA_G34BWGNON043_PRIME DAILY TOTAL SCIENCE	042 12:06 043 03:06 042 12:06	043 03:06 043 12:06 043 12:06	140.6 129.6 270.2	8.1 4.9 12.9	0.0 0.0 0.0	4.1 3.2 7.4	562.5 0.0 562.5	72.1 64.0 136.1	75.3 58.6 133.8	0.0 0.0 0.0	292.6 291.6 584.2	207.1 161.8 368.9	250.0 0.0 250.0	0.0 0.0 0.0	0.0 0.0	1612.4 713.7
			CAPS (Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)		
TOTAL RECORDED (OPNAV data not included)			727.4	96.1	929.9	38.1	976.5	462.8	635.1	197.9	1741.9	888.	9 1304.	6 0.0		

- Secondary Axis for MAG during CIRS Rings on 039
 - Waypoint an observation are currently at NEG_Z to NSP; MAG compliant NEG_X to NSP is unacceptable for a waypoint, but may work for the observation.
- Waypoint / Secondary Axis Pointing During the Occ. Period
 - Suggested XBAND to Earth; NEG_X to 232.3/-55.7 was NOT good. Radiator heating from Saturn brings deltaT above 9 degrees.
 - Other suggestions?
- Waypoint and Secondary MAG proposal
 - Waypoint of NEG_Y to Saturn; POS_X to 125/-60 for the period including the CIRS Subradar observation on DOY 039.
 - CIRS suggested to use waypoint for their pointing.
 - Waypoint of XBAND to Earth; NEG_X to 90/-60 during occultation period.
 - VIMS Dione suggested to use NEG_Y to Dione (20,0,-20 deg. offset); NEG_X to 90/-60.
 - INMS suggested to use NEG_X to Dust_RAM; NEG_Z to Earth.

Saturn 58 Legacy

Waypoint 1 (2008-037T05:36:00 - 2008-039T16:10:00): ISS_NAC to Saturn; NEG_Z to NSP

Waypoint 2 (2008-039T16:10:00 - 2008-039T22:00:00): XBAND to Earth; NEG_X to NEP

Saturn 58 Legacy

Waypoint 2 (2008-039T22:00:00 - 2008-043T12:06:00): ISS_NAC to Saturn; POS_Z to NSP

Pointing Issues

 Waypoint during the movable block period was changed during the retrofit for SPVT Implementation. There were flight rule violations with the previous waypoint attitude.

Data Volume Issues

There is 0% net margin on the first two days of the segment. The SSR is not overfilling. The TWT
will address any possible data volume cuts if needed due to problems this may cause with the full
sequence.

Telemetry Mode Issues

 RADAR only gets the last 30 minutes of their warm-up on DOY039 due to S&ER-3 still active during the first hour and a transition to S&ER-2 for 1.5 hrs. after that. This was accepted by RADAR during TWT meetings and produces two errors in SMT that can be disregarded.

CIMS Issues

- None
- Power/OPMODE Issues
 - None
- Flight Rule/Mission Planning Guideline and Constraint Issues
 - None
- Other Issues
 - The DSN Station request may be 5-10 minutes earlier than necessary.