

Science Planning & Sequence Team

SATURN TARGET WORKING TEAM

Rev 261 Segment Legacy Package

Segment Boundary: February 10, 2017– February 17, 2017 2017-041T01:25 – 2017-048T01:11 (SCET)

Integration Began 02/22/2016 Segment Delivered to S98 Sequence 08/08/2016 Lead Integrator was Kyle Cloutier

Legacy Package Assembled by Kyle Cloutier

Table of Contents

•	Seg	ment Overview and Final Products	3 - 13
	_	Summary	4
	_	Final Sequenced SPASS (Science Planning Attitude Strategy Spreadsheet)	5 - 6
	_	Final Sequenced SMT (SSR Management Tool) Reports	7
	_	Segment Geometry	8 - 9
		Overview	8
		Solar Geometry ORS Boresight Concerns	9
	-	Periapse Quicklooks	10
	_	Daily Science Highlights	11 - 13
٠	Seg	ment Integration Planning	14 - 27
	_	Timeline Gaps & Suggested Observations	15
	_	Initial SMT (SSR Management Tool) Reports	16 - 17
	_	Waypoint Selection	18 - 20
		Options Considered	18
		Waypoints Chosen	19 - 20
	_	Sequence handoff notes	21 - 23
	_	Liens on sequence development/execution	24 - 25
	_	Constraint Management	26
	_	RBOT summary	27

* N.A. = Slide present but content not available.

Segment Overview and Final Products

- Rev 261 is an F-ring periapse segment. Key science included:
 - ISS bright limb observations with excellent spatial resolution due to the close proximity of Saturn.
 - VIMS/CIRS observations to attempt to determine the He/H2 ratio in Saturn's lower stratosphere.
 - Never-done-before (first of five F-ring plane crossing observations) CDA observation to study the dynamics, density, and composition of the dust particles in the ring plane.
 - Multiple VIMS mosaic maps of Saturn, coverage over both hemispheres, as well as a solar ring occultation.
- Periapse science required a custom period. ORS solar viewing constraints impacted science placement and CMT constraint management was required during the occulted period.
- This segment contained a "jumpstart" period. Due to the challenging geometry and unique science of this phase of the mission, the timeline for the days around periapse was decided in advance of full segment integration. Detailed pointing analysis, constraint checking, and reaction-wheel bias optimization (RBOT) was performed on the periapse period. Changes were required to protect the wheels, see RBOT summary on page 26.

Final Sequenced SPASS (1 of 2)

	Request	Riders	Start (SCET)	Start (Epoch)	Duration	End	Primary	Secondary	Comments
	SATURN_261 Segment		2017-041T01:25:00		006T23:46:00	2017-048T01:11:00			
	SP_260SA_WAYPTTURN041_PRIME		2017-041T01:25:00		000T00:40:00	2017-041T02:05:00	ISS_NAC to Saturn	NEG_X to NSP	
	NEW WAYPOINT		2017-041T02:05:00		000T12:42:00	2017-041T14:47:00	ISS_NAC to Saturn	NEG_X to NSP	
	ISS_260SA_LIMBINT003_PRIME	U, V	2017-041T02:05:00		000T02:15:00	2017-041T04:20:00	ISS_NAC to Saturn	POS_Z to 189.3/32.0	
<u> </u>	VIMS_260SA_NHEMMAP001_PRIME	С	2017-041T04:20:00		000T09:47:00	2017-041T14:07:00	ISS_NAC to Saturn	NEG_X to NSP	
2	SP_260EA_DLTURN041_PRIME		2017-041T14:07:00		000T00:40:00	2017-041T14:47:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	MIMI. NEG_Y to Saturn (0,0,-9.5)
75	NEW WAYPOINT		2017-041T14:47:00		000T11:10:00	2017-042T01:57:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	
$\mathbf{}$	SP_260EA_YGAP041_PRIME		2017-041T14:47:00		000T01:30:00	2017-041T16:17:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	
	Apoapse Per = 7.2 d, inc =		2017-041T16:02:19		000T00:00:01	2017-041T16:02:20			
	SP_261EA_DSNOUT541_PRIME	С	2017-041T16:17:00		000T04:25:00	2017-041T20:42:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	
	SP_261EA_C34BWGNON041_PRIME	С	2017-041T20:42:00		000T04:35:00	2017-042T01:17:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	MIMI. NEG_Y to Saturn (0,0,-9.5)
	SP_261SA_WAYPTTURN042_PRIME		2017-042T01:17:00		000T00:40:00	2017-042T01:57:00	ISS_NAC to Saturn	NEG_X to NSP	
	NEW WAYPOINT		2017-042T01:57:00		000T12:50:00	2017-042T14:47:00	ISS_NAC to Saturn	NEG_X to NSP	
	UVIS_261SA_AURDSTARE001_PRIME	C, V	2017-042T01:57:00		000T06:05:00	2017-042T08:02:00	UVIS_FUV to Saturn	NEG_X to NSP	Collaborative Rider(s): VIMS. collaborate with VIMS
d	UVIS_261SA_AURSLEW001_PRIME	C, V	2017-042T08:02:00		000T06:05:00	2017-042T14:07:00	UVIS_FUV to Saturn	NEG_X to NSP	Collaborative Rider(s): VIMS. collaborate with VIMS
~	SP_261EA_DLTURN042_PRIME		2017-042T14:07:00		000T00:40:00	2017-042T14:47:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	MIMI. NEG_Y to Saturn (0,0,-9.5)
C	NEW WAYPOINT		2017-042T14:47:00		000T11:10:00	2017-043T01:57:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	
	SP_261EA_YGAP042_PRIME		2017-042T14:47:00		000T01:30:00	2017-042T16:17:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	MIMI. NEG_Y to Saturn (0,0,-9.5)
	SP_261EA_C34BWGNON042_PRIME	С	2017-042T16:17:00		000T09:00:00	2017-043T01:17:00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_Y to Saturn	MIMI. NEG_Y to Saturn (0,0,-9.5)
	SP_261SA_WAYPTTURN043_PRIME		2017-043T01:17:00		000T00:40:00	2017-043T01:57:00	ISS_NAC to Saturn	NEG_X to NSP	
0 -	NEW WAYPOINT		2017-043T01:57:00		000T23:35:00	2017-044T01:32:00	ISS_NAC to Saturn	NEG_X to NSP	
<u> </u>	CIRS_261SA_REGMAP003_PRIME	V	2017-043T01:57:00		000T20:55:00	2017-043T22:52:00	CIRS_FPB to Saturn	NEG_X to NSP	
a	CIRS_261SA_NADIROCC001_PRIME		2017-043T22:52:00		000T02:00:00	2017-044T00:52:00	CIRS_FP4 to Saturn	POS_Z to NSP	PIE, Track occ lat=0.33S (Phil), Ion~230 in DIGIT
7 h	SP_261EA_DLTURN044_PRIME		2017-044T00:52:00		000T00:40:00	2017-044T01:32:00	XBAND to Earth	POS_X to 14.73/-40.39	
$\mathbf{}$	NEW WAYPOINT		2017-044T01:32:00		000T16:23:00	2017-044T17:55:00	XBAND to Earth	POS_X to 14.73/-40.39	
	ENGR_261SC_KPTYBIAS044_PRIME		2017-044T01:32:00		000T01:30:00	2017-044T03:02:00	POS_Z to DELTA_H (0.0,0.0,34.0 deg. offset)	NEG_X to Sun	
÷-	SP_261EA_M34HEFNON044_PRIME	С	2017-044T03:17:00		000T07:15:00	2017-044T10:32:00	XBAND to Earth	POS_X to 14.73/-40.39	MIMI. NEG_Y to Saturn (0,0,-9.5) for first half of split pass
	SP_261EA_G70METNON044_PRIME	м	2017-044T10:32:00		000T06:52:00	2017-044T17:24:00	XBAND to Earth	Rolling/SRU	MAG Range 1 - Roll Requested. SRU
щ.	SP_261SA_WAYPTTURN044_PRIME		2017-044T17:24:00		000T00:31:00	2017-044T17:55:00	ISS_NAC to Saturn	POS_Z to NSP	
S	NEW WAYPOINT		2017-044T17:55:00		001T08:37:00	2017-046T02:32:00	ISS_NAC to Saturn	POS_Z to NSP	
	VIMS_261SA_NPOLMAP001_PRIME	C, I, U	2017-044T17:55:00		000T02:41:00	2017-044T20:36:00	ISS_NAC to Saturn	POS_Z to 145.391/36.169	
H	VIMS_261SA_GAMCRUOCC001_PIE	С	2017-044T20:36:00		000T02:10:00	2017-044T22:46:00	VIMS_IR to 187.791/-57.113	NEG_X to NSP	Collaborative Rider(s): CIRS
, n	CIRS_261SA_REGMAP001_PIE	V	2017-044T22:51:00		000T04:00:00	2017-045T02:51:00	CIRS_FPB to Saturn	POS_Z to NSP	slow scans ~87N to 90N

Final Sequenced SPASS (2 of 2)

Saturn 261 Legacy

Request	Riders	Start (SCET)	Start (Epoch)	Duration	End	Primary	Secondary	Comments
Begin Custom		2017-045T02:51:00		000T00:00:01	2017-045T02:51:01	ISS_NAC to Saturn	POS_Z to NSP	
								Pick up at ISS_NAC to Saturn, POS_Z to NSP; Hand off at ISS_NAC to Saturn,
ISS_261SA_LIMBINT001_PRIME	M, U, V	2017-045T02:51:00		000T02:05:00	2017-045T04:56:00	ISS_NAC to Saturn	POS_Z to NSP	POS_X to SC_N_Orbit_Pole.
								Pick up at ISS_NAC to Saturn, POS_X to SC_N_Orbit_Pole; Hand off at
CDA_261DR_FRING001_PIE	E, M	2017-045T04:56:00		000T02:00:00	2017-045T06:56:00	POS_Z to SC_RAM	POS_X to SC_N_Orbit_Pole	ISS_NAC to 295.731/24.449, NEG_Z to 55.727/47.716.
Periapse R = 2.485 Rs, lat		2017-045T06:18:13		000T00:00:01	2017-045T06:18:14			
								Pick up at ISS_NAC to 295.731/24.449, NEG_Z to 55.727/47.716; Hand off at
ISS_261SA_LIMBINT002_PRIME	E, M, U, V	2017-045T06:56:00		000T01:40:00	2017-045T08:36:00	ISS_NAC to Saturn	NEG_Z to North_Pole_Dir	ISS_NAC to Saturn, NEG_Z to NSP.
								Pick up at ISS_NAC to Saturn, NEG_Z to NSP; Hand off at CIRS_FPB to Saturn,
CIRS_261SA_REGMAP002_PIE	v	2017-045T08:36:00		000T04:00:00	2017-045T12:36:00	CIRS_FPB to Saturn	NEG_Z to NSP	NEG_Z to NSP. slow scans ~87S to 90S
								Pick up at CIRS_FPB to Saturn, NEG_Z to NSP; Hand off at ISS_NAC to Saturn
VIMS_261SA_SPOLMAP001_PRIME	C, U	2017-045T12:36:00		000T03:54:00	2017-045T16:30:00	ISS_NAC to Saturn	NEG_Z to NSP	(-4.985,0.0,0.0 deg. offset), NEG_Z to NSP.
								Pick up at ISS_NAC to Saturn (-4.985,0.0,0.0 deg. offset), NEG_Z to NSP;
VIMS_261SA_SSTRMLAT001_PRIME	C, U	2017-045T16:30:00		000T02:00:00	2017-045T18:30:00	ISS_NAC to Saturn	NEG_Z to NSP	Hand off at ISS_NAC to Saturn (3.438,0.0,0.0 deg. offset), NEG_Z to NSP.
								Pick up at ISS_NAC to Saturn (3.438,0.0,0.0 deg. offset), NEG_Z to NSP; Hand
VIMS 261SA SEQREGMAP001 PRIME	C, E, U	2017-045T18:30:00		000T03:18:00	2017-045T21:48:00	ISS NAC to Saturn	NEG_Z to NSP	off at ISS_NAC to Saturn (10.0,0.0,0.0 deg. offset), NEG_Z to NSP.
	1							Pick up at ISS NAC to Saturn (10.0,0.0,0.0 deg. offset), NEG Z to NSP; Hand
VIMS 261SA SPOLMAP002 PRIME	C, U	2017-045T21:48:00		000T04:04:00	2017-046T01:52:00	ISS NAC to Saturn	NEG Z to NSP	off at ISS_NAC to Saturn, NEG_Z to NSP.
								Pick up at ISS_NAC to Saturn, NEG_Z to NSP; Hand off at ISS_NAC to Saturn
SP 261SA WAYPTTURN046 PRIME		2017-046T01:52:00		000T00:40:00	2017-046T02:32:00	ISS NAC to Saturn (0.0,5.0,20.0 deg. offset)	POS Z to NSP	(0.0,5.0,20.0 deg. offset), POS Z to NSP.
NEW WAYPOINT		2017-046T02:32:00		000T06:01:00	2017-046T08:33:00	ISS_NAC to Saturn (0.0,5.0,20.0 deg. offset)	POS_Z to NSP	
End Custom		2017-046T02:32:00		000T00:00:01	2017-046T02:32:01	ISS NAC to Saturn (0.0,5.0,20.0 deg. offset)	POS Z to NSP	
VIMS 261RI SOLAROCC001 PRIME	U	2017-046T02:32:00		000T02:58:00	2017-046T05:30:00	UVIS SOL OFF to Sun	POS Z to NSP	Collaborative Rider(s): UVIS
UVIS_261SA_AURSTARE001_PRIME	C, I, V	2017-046T05:30:00		000T02:23:00	2017-046T07:53:00	UVIS_FUV to Saturn	POS_Z to NSP	Collaborative Rider(s): VIMS
SP_261EA_DLTURN046_PRIME		2017-046T07:53:00		000T00:40:00	2017-046T08:33:00	XBAND to Earth	NEG_X to NSP	
NEW WAYPOINT		2017-046T08:33:00		000T10:40:00	2017-046T19:13:00	XBAND to Earth	NEG_X to NSP	
SP_261EA_YGAP046_PRIME		2017-046T08:33:00		000T01:30:00	2017-046T10:03:00	XBAND to Earth	NEG_X to NSP	
SP_261EA_G70METNON046_PRIME	С	2017-046T10:03:00		000T08:30:00	2017-046T18:33:00	XBAND to Earth	Rolling	
SP_261SA_WAYPTTURN446_PRIME		2017-046T18:33:00		000T00:40:00	2017-046T19:13:00	ISS_NAC to Saturn	POS_Z to 189.1/32.0	Secondary RBOT Friendly
NEW WAYPOINT		2017-046T19:13:00		000T17:20:00	2017-047T12:33:00	ISS NAC to Saturn	POS_Z to 189.1/32.0	
								Collaborative Rider(s): VIMS. collaborate with VIMS, 2 VIMS images for
UVIS_261SA_AURSLEW002_PRIME	C, V	2017-046T19:13:00		000T03:20:00	2017-046T22:33:00	UVIS_FUV to Saturn	NEG_X to NSP	stare (~140min), rest of time will be slew
ISS_261SA_LIMBINT004_PRIME	U, V	2017-046T22:33:00		000T02:00:00	2017-047T00:33:00	ISS_NAC to Saturn	POS_Z to 189.3/32.0	
CIRS_261SA_MIRMAP001_PRIME	V	2017-047T00:33:00		000T11:20:00	2017-047T11:53:00	CIRS_FP3 to Saturn (0.0,5.0,0.0 deg. offset)	POS_Z to NSP	
SP_261EA_DLTURN047_PRIME		2017-047T11:53:00		000T00:40:00	2017-047T12:33:00	XBAND to Earth	NEG_X to NSP	
NEW WAYPOINT		2017-047T12:33:00		000T13:18:00	2017-048T01:51:00	XBAND to Earth	NEG_X to NSP	
ENGR_261SC_KPTYBIAS047_PRIME		2017-047T12:33:00		000T01:30:00	2017-047T14:03:00	NEG_Z to DELTA_H (0.0,0.0,2.0 deg. offset)	NEG_X to Sun	
SP 261EA C70METNON047 PRIME	с	2017-047T14:03:00		000T11:08:00	2017-048T01:11:00	XBAND to Earth	Rolling/SRU	

Gap 4

Final Sequenced SMT and Data Volume

Saturn 261 Legacy

DATA VOLUME SUMMARY --- TRANSFER FRAME OVERHEAD INCLUDED (80 BITS PER 8800-BIT FRAME)

					OBSERVATION_PERIOD										DOW	NLIN	K_PAS	s			
								P4				P5	- R	ECORDED				PLAY	YBACK		
DOWNLINK PASS NAME	St doy	tart / <u>hh:mm</u>	Er doy	nd / <u>hh:mm</u>	START (Mb)	SCI (Mb)	HK+E (Mb)	ТОТА (Mb)	L CPA	CTY MRG b) (Mb	- N)	OPNAV (Mb)	SC (M	I ENG	R TOT/) (M	AL CP.	ACTY Mb)	MARGN (Mb)	N NET_) (Mb)	MARGN (%)	CAROVR (Mb)
SP_261EA_C34BWGNON041_PRIME SP_261EA_C34BWGNON042_PRIME SP_261EA_M34HEFNON044_PRIME SP_261EA_G70METNON044_PRIME SP_261EA_G70METNON046_PRIME SP_261EA_C70METNON047_PRIME	041 042 044 044 046 047	L 20:42 2 16:17 4 03:17 4 10:32 5 10:03 7 14:03	042 043 044 044 046 048	01:17 01:17 10:32 17:24 18:33 01:11	577 1595 1691 2581 806 1511	1160 476 834 0 3145 1566	84 63 110 0 172 82	1822 2134 2635 2581 4123 3159	3322 3322 3322 3322 3322 3322 3322	2 150 2 118 2 68 2 74 2 -80 2 16	0 B 7 1 0 3	0 0 0 0 0	7 16 29 22 31 23	9 27 4 53 0 43 0 40 3 50 3 66	192 235 296 284 368 345	7 1 2 2 5 2 8 3	333 - 660 - 387 - 035 174 - 475	-1595 -1692 -2582 -807 -1511 17	-800 -800 -800 -800 163 426	-6% -5% -5% 1% 4%	1595 1691 2581 806 1511 0
DATA VOLUME REPORT TRANS	SFER	FRAME	OVERH	EAD NOT	INCLU	ED															
Event	Sta doy	rt <u>hh:mm</u>	End doy	hh:mm	CAPS (Mb)	CDA (Mb)	CI (M	RS b)	INMS (Mb)	ISS (Mb)	M (M	IAG M Ib) (4IMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	V1 (M	IMS F 1b)	PROBE (Mb)	ENGR (Mb)	TOTAL (Mb)
OBSERVATION_NOR SP_261EA_C34BWGNON041_PRIME DAILY TOTAL SCIENCE	041 041 041	00:50 20:42 00:50	041 042 042	20:42 01:17 01:17	0.0 0.0 0.0	23.0 8.6 31.7	70 27 98	.9 .9 .8	7.2 1.7 8.8	249.8 0.0 249.8	34 8 43	.8 6 .2 1 .0 7	50.4 14.0 74.4	0.0 0.0 0.0	65.1 15.0 80.1	38.8 2.5 41.3	600 600	0.0 0.0 0.0	0.0 0.0 0.0	83.0 0.0 83.0	1232.9 77.9
OBSERVATION_NOR SP_261EA_C34BWGNON042_PRIME DAILY TOTAL SCIENCE	042 042 042	01:17 16:17 01:17	042 043 043	16:17 01:17 01:17	0.0 0.0 0.0	28.3 17.0 45.3	87 64 152	.6 .8 .4	5.4 3.2 8.6	0.0 0.0 0.0	26 16 42	.7 .0 .7	45.9 27.5 73.4	0.0 0.0 0.0	49.1 29.5 78.6	132.2 4.9 137.2	96 (96	5.0 0.0 5.0	0.0 0.0 0.0	62.7 0.0 62.7	533.9 163.0
OBSERVATION_NOR SP_261EA_M34HEFNON044_PRIME SP_261EA_G70METNON044_PRIME DAILY TOTAL SCIENCE	043 044 044 043	01:17 03:17 10:32 01:17	044 044 044 044	03:17 10:32 17:24 17:24	0.0 0.0 0.0 0.0	49.0 13.7 13.0 75.7	330 67 0 397	.0 .5 .0 .5	9.4 2.6 12.5 24.5	0.0 0.0 0.0 0.0	46 12 12 71	.2 .9 .2 .3 12	79.6 22.2 21.0 22.8	0.0 0.0 0.0 0.0	197.4 164.4 155.7 517.5	0.0 4.0 3.8 7.7	119 0 119	5.0 3.0 3.0 5.0	0.0 0.0 0.0 0.0	108.7 0.0 0.0 108.7	935.2 287.3 218.2
OBSERVATION_NOR SP_261EA_G70METNON046_PRIME DAILY TOTAL SCIENCE	044 046 044	17:24 10:03 17:24	046 046 046	10:03 18:33 18:33	0.0 0.0 0.0	92.2 16.0 108.2	278 59 337	.4 .4 .8	24.7 3.1 27.8	552.1 0.0 552.1	140 15 155	.3 12 .1 2 .4 19	24.4 26.0 50.4	0.0 0.0 0.0	387.7 186.5 574.2	212.0 3.6 215.6	1305 (1305	5.0 0.0 5.0	0.0 0.0 0.0	169.9 0.0 169.9	3286.7 309.7
OBSERVATION_NOR SP_261EA_C70METNON047_PRIME DAILY TOTAL SCIENCE	046 047 046	18:33 14:03 18:33	047 048 048	14:03 01:11 01:11	0.0 0.0 0.0	36.8 21.0 57.8	105 109 215	.6 .4 .0	7.0 4.0 11.0	499.5 0.0 499.5	34 19 54	.7 5	59.7 34.1 93.7	0.0 0.0 0.0	396.8 36.5 433.3	94.8 6.1 100.9	317 0 317	7.0 0.0 7.0	0.0 0.0 0.0	81.5 0.0 81.5	1633.4 230.9

* NOTE: Negative SSR (P4) Margins did not result in data loss due to compression/under-utilization.

K. Cloutier

08/07/2017

7

Segment Geometry

Saturn 261 Legacy

<u> </u>	-				U	•••	•••										
View of SATU	JRN fro	om CA	SSINI -										Rev	260 OUTBOUN	D		
2017 FEB 1	0 01:2	5:00 U				NEP							2017	- 041T01:	25:00 SC	ET	
13.7° field o	of view												2017	FEB 10 01:	25:00 SC	ET	
													2017	FEB 10 02:	52:56 ER	т	
													Apoa	pse_260 +	006713:5	1:05	
•		Ram											Peri	apse_260 +	002123:3	8:27	
TITAN						\rightarrow							Ligh	t time:	87.9 min		
													Orbi	t period:	7.2 days		
													Radi	us 12615	40 km	20.9	93 Rs
•													Rad_	cyl 12583	64 km	20.8	38 Rs
													Z_ht	_cyl 894	56 km	1.4	18 Rs
													Mag	L	21.04		
													Semi	_axs 7183	06 km	11.5	92 Rs
TETHYS		_				- C				_	-		Ecce	ntricity	0.791		
- 4	0		Carlos and							(CON		+2	Incl	ination	63.54 de	g	
										_			Sun	range	10.06 AU		
													Eart	h range	10.57 AU		
														DSN ELEV	D/L	U/L	
												ENC	Gold	stone -	69.1 -3	4.5	
Use													Canb	erra	30.5 6	5.6	
													Madr	id -	11.0 -4	4.1	
						1	$\tau \tau$							LOOK DT	RECTION	TNEO	
1.1								SATURN					FOV		13.7 deg	238.	7 mrad
													RA	1	03 729 d	ea	
1.1													DEC		-7 016 d	en	
· · ·													Cros		0 000 8		
							50						FDC	20270076	4 671 d		
						208 3	C.F.						CED		56 096 d		
Solar System	n Simu	lator n	/4.0										000		27 1 deg	-9	
	,			1011	= = = = = = = = = = = = = = = = =	ter Doo	x			-	-			rad angle	59 6 deg		
Point NEG_1	r		• at SAT	URN	 and a 	Ign POS	<u>×</u> •	= Up	• w	IN NS	٢			rad anyre	00.0 aug		
														_			
User Vector - i	RA:		152.756	Tit		lo d	TILE		om Out	🥅 La	bels	Axes		Year <	> <	>	Hour
D	EC:		-10.205	lef	R	in the second	Bight) Fil	Screen) 🥅 Or	bits	Vectors					
											-			Month <	2 4		Minute
Paste	Current	RA/DEC				wn	H Ree	Z	oom In 🛛 🔽	FOVs		I at/lons		_			
			<u> </u>	w inagi			- THINGS			1013		COLVED THE		Day <	> <	>	Second
	_					_								· _			
Tum Analyzer:	SAT	URN	-	to EARTH	1	 about 	Z	▼ on	RWA 👻	= 5.	5 min /	/ 34.5 deg				Event	< >
	8/C	SAT	Dak	107	ALTT	TUDE	DHASE	ANCT.D	DIAMETED	SUB	S/C	DLON	VPET.	7 HOHT	2 10 0	T.F	FROM
BODY	0000	00002	(km)	(D=)	(km)	(P=)	(deg)	(deg	mrad)	LON	LAT	(deg)	(lem/a)	(km)	SATON	FADTH	MEG
5051	00003		(KIII)	(RS)	(Kui)	(1.5)	(deg)	(ueg	miad)	DON		(deg)	(Am/ 5)	(Km)	SAINA	DARIN	PURIT
SATURN			1261540	20.93	1201300	19 93	142.9	5 48	95 58	351	4	0	2 7	0	0.0	34 5	101 1
MTMAG			1940512	22.24	1940919	22.24	146.4	0.02	0.91	200		-112	16.0	-2055	2.2	21 0	107 6
PHORE ADDIG			1000012	12.24	1000000	12.24	146.4	0.02	0.31	233	-	-112	10.0	-3088	6.2	01.0	107.0
ENGELADUS			1060210	17.89	1003306	17.59	140.2	0.03	0.48	213		-25	12.3	-18	0.2	32.9	107.0
151RIS			1511297	25.08	1510759	25.07	139.4	0.04	0.72	29	3	145	12.1	-5578	6.5	37.4	35.2
DIONE			1637695	27.17	1637131	27.16	143.7	0.04	0.69	0	3	-180	11.4	-19	0.9	33.6	100.8
RHEA			984752	16.34	983990	16.33	148.1	0.09	1.56	253	5	-47	8.7	874	23.2	32.5	122.1
TITAN			2487452	41.27	2484877	41.23	140.5	0.12	2.07	2	2	166	6.9	8776	7.1	36.1	94.1
HYPERION			699029	11.60	698904	11.60	104.8	0.03	0.47	143	54	-29	5.4	-20533	89.2	79.6	159.0
IAPETUS			4609891	76.49	4609144	76.48	127.9	0.02	0.32	10	5	139	4.7	858154	33.3	47.3	67.8
PHOEBE			15889434	263.65	15889322	263.64	176.6	0.00	0.01	46	-20	-160	2.5	6803887	34.1	2.4	100.9
CATION			1261540	20.92	1201902	19.00	142.0	5 40	95 50	951					0.0	24.5	101.1
SUCCESSION			1501240	20.33	1201300	19.93	144.7	0.40	23.30	321	-	0	4.1	0	0.0	31.3	101.1

Start: 2017-041T01:25

	Saturn Range	Phase Angle	Sub-S/C Lat.
Segment Start	20.9	142.9	4
Apoapse	21.4	137.0	9
Periapse	2.5	42.8	-9
Segment End	20.6	145.1	2

Apoapse: 2017-041T16:02

Periapse: 2017-045T06:18

End: 2017-048T01:11

Solar Geometry – ORS Boresight Concerns

Vien of SATU 2017 FEB 44 48.5° field of -X	RN fra 18:3 f view	iator v	SSINI TC User 4.6 T at SATL		HVENUSSIN		Satu ath o RS	f Su		th NS	P		Rev 2017 2017 2017 2017 2017 2017 2017 Radi Radi Z_ht Nag_ Semi Ecce Incl Sun_ Ecce Canb Madr Canb Madr Canb Madr Canb Canb Canb Canb Canb Canb Canb Canb	261 OUTBOUN - 045718: FEB 14 18: FEB 14 20: FEB 14 20: FEB 14 20: FEB 14 20: FEB 14 20: 10 pse_261 + 10 p	D 34:00 SC 34:00 SC 01:21 ER 004T02:3 12:15:45 40 km 7.2 days 40 km 7.4 min 7.2 days 40 km 0.79 km 13.45 49 km 0.79 km 13.45 40 km 0.79 km 14.55 40 km 0.79 km 15.55 40 km 0.000 km 15.55 40 km 15.55 1	EI EI I:40 8.3 6.5 -5.1 11.9 9.7 4.4 5.6 INFO 847.3 eg eg eg eg	1 Rs 3 Rs 4 Rs 2 Rs mrad
User Vector - R	IA:		189.3	Tilt L		ql	Tilt R	Zo	om Out) 📃 La	abels	Axes		Year <	> <	>	Hour
DE	iC:		32	Left	Re	eset	Right) Fil	Screen) 📃 O	rbits	Vectors		Month <	> <		Minute
Paste	Current	RA/DEC		V Image	Do	wn 🗸	Hi Res	Z	oom In 🔍 🗸	FOVs		Lat/Lons		Day <	> <) <mark>></mark> s	econd
Tum Analyzer:	SATI	URN	•	to EARTH		▼ about	Z	• on	RWA -	= 3.	.5 min /	14.0 deg				Event	< >
	s/c	SAT	RAN	GE	ALTI	TUDE	PHASE	ANGLR	DIAMETER	SUB	s/c	DLON	VREL	Z HGHT	ANG	LE F	ROM
BODY	occ?	OCC?	(km)	(Rs)	(km)	(Rs)	(deg)	(deg	mrad)	LON	LAT	(deg)	(km/s)	(km)	SATRN	EARTH	RAM
SATURN			500540	8.31	442490	7.34	168.0	13.83	241.40	239	-38	0	9.9	0	0.0	14.0	136.2
MIMAS			623052	10.34	622851	10.33	164.9	0.04	0.67	332	-31	-138	23.8	-3417	13.9	19.9	149.7
ENCELADUS			683501	11.34	683247	11.34	172.8	0.04	0.75	25	-27	148	14.5	22	15.1	2.3	134.3
TETHYS			473397	7.85	472867	7.85	136.7	0.13	2.28	287	-41	-60	19.2	5578	35.1	47.5	138.5
DIONE			686210	11.39	685648	11.38	144.0	0.09	1.64	322	-27	-105	19.9	170	32.6	40.9	155.2
TITAN			1019709	16.92	1017199	16.91	72 1	0.12	2.13	325	-25	-88	18.1	-2050	104 2	102 6	146.8
HYPERION			1695698	28.14	1695572	28.13	149.9	0.01	0.19	45	49	-150	14.9	17521	34.2	34.5	170 4
IAPETUS			3754761	62.30	3754013	62.29	108.0	0.02	0.40	8	-3	93	7.3	639695	73.8	67.0	72.0
PHOEBE			15354260	254.77	15354150	254.76	178.7	0.00	0.01	122	-23	177	9.6	6747292	11.1	6.1	141.4

• Pointing to NEG_Y to Saturn (center) would lead to a CMT violation between ~2017-045T18:34:00 and ~2017-046T09:36:00.

Saturn 261 Legacy

- Minimum NEG_Y to Sun angle is ~3.55 $^\circ$ from 2017-046T00:06 to 00:16.
- Until 21:00, pointing at the north limb brings one out of the 12° cone, but not the 15° cone. A waiver will be required.
- Cannot observe Saturn from 21:00-21:48:33
- Sun is occulted from 21:48:33 02:32:30, can observe Saturn, CMT management required
- Cannot observe Saturn from 02:32:30-05:45

• From 05:45 - 07:04, pointing at the southern right limb or, after 07:04, pointing at the south pole, brings one out of the 12° cone, but not the 15° cone. A waiver will be required.

Periapse Quicklooks

Rev 261

VIMS_261SA_NPOLMAP001_PRIME

VIMS_261SA_GAMCRUOCC001_PIE

CIRS_261SA_REGMAP001_PIE

Begin Custom

ISS_261SA_LIMBINT001_PRIME

CDA_261DR_FRING001_PIE

Periapse R = 2.485 Rs, lat ...

ISS_261SA_LIMBINT002_PRIME

CIRS_261SA_REGMAP002_PIE

VIMS_261SA_SPOLMAP001_PRIME

VIMS_261SA_SSTRMLAT001_PRIME

VIMS_261SA_SEQREGMAP001_PRIME

VIMS_261SA_SPOLMAP002_PRIME

SP_261SA_WAYPTTURN046_PRIME

NEW WAYPOINT

End Custom

VIMS_261RI_SOLAROCC001_PRIME

UVIS_261SA_AURSTARE001_PRIME

- VIMS took a North Pole mosaic map then observed the occultation of the star Gamma Cru. This observation combined with an earlier CIRS observation to measure Saturn's helium abundance.
- CIRS took a regional map of the north polar region, obtaining temperature data of the northern vortex. This observation, was at a higher resolution than regional maps taken near apoapse.
- ISS imaged along the bright limb of Saturn. Due to the closeness to Saturn, this observation allowed for excellent spatial resolution for both ISS and UVIS and vertical and horizontal profiles of airglow, aurora, and hydrocarbons. At the close distance near periapse, Cassini could measure the vertical distribution of the hydrocarbons, which is what is needed to test and improve photochemical models of Saturn's high atmosphere.
- CDA studied the dynamics, density and composition of the micron and sub-micron sized icy dust grains in Saturn's ring plane during ring plane crossing.
- ISS imaged along the bright limb in high resolution. CIRS created a regional map of the south polar region, obtaining temperature data of the southern vortex
- VIMS mapped the South Pole, then mosaics the South Storm Alley region, centered at 35deg S. latitude, then mosaics the South Equatorial region, centered at 5deg S. latitude. VIMS then returned to the South Pole to map again.
- VIMS observed a solar ring occultation as the sun passed behind the C-F rings. UVIS observed the southern auroral oval between 55deg – 90deg latitudes, alternating between staring and slewing.

Daily Science Highlights (1 of 3)

Saturn 261 Legacy

DOY 041 (10 February 2017): Saturn_261 was a ~7 day periapse segment. Science started with ISS imaging along the bright limb of Saturn, working with VIMS and UVIS to study the composition of the high atmosphere. VIMS then led a 10hr mosaic mapping observation of Saturn's northern hemisphere, with CIRS riding.

DOY 042 (11 February 2017): UVIS performed a collaborative observation with VIMS, first staring at the illuminated northern aurora for 6hr, then repeatedly slewing in the same region for another 6hrs.

DOY 043 (12 February 2017): CIRS observed during a 21hr observation, creating a regional map of the north polar region of Saturn as the planet rotated, studying the temperature of the northern vortex. VIMS and ISS rode. CIRS performed an observation to yield the temperature at the point of latitude and longitude of an upcoming occultation of the star Gamma Cru. This will be used to help determine Saturn's helium abundance.

DOY 044 (13 February 2017): VIMS created a North Pole mosaic map of Saturn with CIRS, ISS, and UVIS riding. VIMS then observed the occultation of the star Gamma Cru. This was **1 of 5** very similar requests in the F/Prox period to attempt to determine the He/H2 ratio in Saturn's lower stratosphere by obtaining quasi-simultaneous observations of a stellar occultation by VIMS (which yields the scale height, or T/\mu) and a limb scan by CIRS (which yields the temperature profile, T(Z)). (Previous similar attempts had been unsuccessful due to various technical issues, so this was one of the last chances to get this key measurement. The companion requests were on revs 268, 291 and 292, with those on 291 and 292 being the closest, and thus highest resolution for CIRS. All but rev 268 were Saturn PIEs.) The observation was very sensitive to pointing errors. The VIMS occultation had to be done on RWAs, with inertially-fixed pointing to keep the star in the 0.25 mrad VIMS pixel. The CIRS limb observation must have had the CIRS arrays oriented perpendicular to the limb, within about 10 deg. Using both the CIRS and VIMS observations, it would be possible to solve for the mean molecular weight of the atmosphere, and thus the helium abundance. Following this observation, CIRS took the lead, with VIMS riding, for another regional map of the north polar region, obtaining temperature data of the northern vortex. This observation, a PIE (pre-integrated event) and occurring close to periapse, was of a much narrower region and at higher resolution than regional maps taken near apoapse.

Daily Science Highlights Saturn (2 of 3)

Saturn 261 Legacy

DOY 045 (14 February 2017): A densely packed periapse observation period began with ISS imaging along the bright limb of Saturn. Due to the close proximity to Saturn, this observation provided excellent spatial resolution for both ISS and UVIS (riding; the UVIS spatial resolution was especially important because a UVIS pixel is 1mrad across), vertical and horizontal profiles of airglow, aurora, and hydrocarbons. At the close distance near periapse, Cassini could measure the vertical distribution of the hydrocarbons, which is what is needed to test and improve photochemical models of Saturn's high atmosphere. CDA then took the lead during periapse to take never-done-before in situ measurements to gather information about the F-Ring itself. CDA studied the micron and sub-micron sized icy dust grains in Saturn's ring plane during ring plane crossing. Three aspects were of interest: dynamics, density and composition of the dust particles. Grains with mean size larger than approx. one micron are constrained to the ring plane. They move outwards by plasma-drag or move inwards by Poynting-Robertson-drag forces. Depending on the density, collisions may also play a role. Compositional measurements of the grains with the integrated time-of-flight mass spectrometer of CDA are essential to understanding the origin, age and evolution of the ring. The extremely thin structure of the main rings together with the fast Cassini speed are demanding and allow only a short snapshot such that CDA integrated the results of up to four crossings in order to have a statistical meaningful data set. The observation CDA_261DR_FRING001_PIE was one out of four FRING observations. This observation would also give insight into the upcoming proximal phase measurements, when Cassini was to be inside the D-Ring. Coming out of periapse, ISS (with UVIS and VIMS) took over to continue imaging along the bright limb, once again at spectacular resolution. Now in view of Saturn's southern hemisphere, CIRS created a regional map of the south polar region, obtaining temperature data of the southern vortex. This observation, a PIE (pre-integrated event) and occurring close to periapse, was of a much narrower region and at higher resolution than regional maps taken near apoapse. VIMS then began a series of mapping observations of Saturn's southern latitudes, moving northward over time, beginning with a map of the South Pole, then performing mosaics of the South Storm Alley region, centered at 35deg S. latitude, and mosaics of the South Equatorial region, centered at 5deg S. latitude. VIMS then returned to the South Pole to map for 4hr. CIRS and UVIS rode on all 4 of these VIMS observations.

Daily Science Highlights Saturn (3 of 3)

Saturn 261 Legacy

DOY 046 (15 February 2017): VIMS and UVIS used their solar ports to collaboratively observe a solar ring occultation. As the sun egressed, passing behind the C through F rings of Saturn, the instruments could study the size and spatial distributions of the smallest particles in the rings. UVIS and VIMS then took advantage of the dark south polar region to observe the southern auroral oval between 55deg – 90deg latitudes, alternating between staring and slewing. ISS, with UVIS and VIMS riding, imaged the bright limb of Saturn to study the composition of the high atmosphere.

DOY 047 (16 February 2017): CIRS mapped Saturn in the mid-IR to determine upper troposphere and tropopause temperatures. VIMS rode. Saturn_261 ended with a downlink of all data to Earth via the 70M antenna in Canberra, Australia.

Segment Integration Planning

Timeline Gaps and Suggested Observations

Saturn 261 Legacy

Gap	Start	End	Duration	Phase angle (range)	Rs range	Sub-S/C Lat.	Snapshot (mid-gap)
1	2017-041T02:05:00	2017-041T14:07:00	000T12:02:00	142.6 to 137.8	20.97 to 21.34	4 to 9	
	Suggested Obs	ervations: ISS L	imb or VIM	S N. Hemisp	nere		
2	2017-042T01:57:00	2017-042T14:07:00	000T12:10:00	133.1 to 128.0	21.16 to 20.4	13 to 17	
	Suggested Obs	ervations: UVIS	Auroral				
3	2017-043T01:57:00	2017-043T22:52:00	000T20:55:00	122.5 to 109.6	19.04 to 14.9	22 to 33	
	Suggested Obs	ervations: CIRS	N. Pole Maj	pping			
4	2017-046T19:13:00	2017-047T11:53:00	000T16:40:00	160.5 to 151.1	16.25 to 19.21	-12 to -3	All of a second se
	Suggested Obs	ervations: Auror	al Stare, CII	RS Map			

Beginning of Integration:

DATA VOLUME SUMMARY --- TRANSFER FRAME OVERHEAD INCLUDED (80 BITS PER 8800-BIT FRAME)

					OBS	ERVATI	ON_PERI	OD					DOWNLIN	K_PASS			
						P4			P5	RECO	RDED	 		PLAYE	ACK		
	Start	 End	START	SCI	HK+E	TOTAL	CPACTY	MRGN	OPNAV	SCI	ENGR	TOTAL	CPACTY	MARGN	NET_M	ARGN	CAROVR
DOWNLINK PASS NAME	doy hh:mm	doy hh:mm	(Мь)	(Мь)	(Мь)	(Мь)	(Мь)	(Мь)	(Мь)	(МЪ)	(Мь)	(Мь)	(МЬ)	(МЬ)	(МЬ)	(8)	(Мь)
SP_261EA_C34BWGNON041_PRIME	041 16:17	042 01:17	0	163	63	226	3322	3096	0	199	53	478	655	177	84	18	0
SP_261EA_C34BWGNON042_PRIME	042 16:17	043 01:17	0	179	63	242	3322	3080	0	199	53	494	660	165	-92	08	0
SP_261EA_M70METNON044_PRIME	044 03:02	044 10:47	0	497	109	606	3322	2716	0	451	46	1103	1799	695	-257	-28	0
SP_261EA_G70METNON044_PRIME	044 10:47	044 17:15	0	0	0	0	3322	3322	0	325	38	364	1945	1581	-953	-128	0
SP_261EA_G70METNON046_PRIME	046 10:03	046 16:33	0	5685	172	5858	3322	-2535	0	287	38	3648	1842	-1806	899	178	1806
SP_261EA_C70METNON047_PRIME	047 14:03	048 01:11	1806	364	91	2261	3322	1061	0	249	66	2576	3475	899	899	268	0

Beginning of Integration:

DATA VOLUME REPORT --- TRANSFER FRAME OVERHEAD NOT INCLUDED

Frent	Start	t hh-mm	End	hh - ma	c	APS Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR	RPW	s UVI	S VIM	PROBE	ENGR (Mb)	TOTAL (Mb)
							(110)	(140)	(2007	(110)	(2007	(2007	(200)	(222)	/ (24	·/ (22)	(111)	(222)	(222)
OBSERVATION NOR	041 (01:25	041	16:17		0.0	14.2	0.0	5.4	0.0	26.4	45.5	0.0	70.	1 0.	0 0.0	0.0	62.1	223.7
SP 261EA C34BWGNON041 PRIME	041 :	16:17	042	01:17		0.0	17.0	86.4	3.2	0.0	16.0	27.5	0.0	42.	4 4.	9 0.0	0.0	0.0	197.5
DAILY TOTAL SCIENCE	041 (01:25	042	01:17		0.0	31.1	86.4	8.6	0.0	42.4	73.0	0.0	112.	6 4.	9 0.0	0.0	62.1	
OBSERVATION_NOR	042 (01:17	042	16:17		0.0	28.3	0.0	5.4	0.0	26.7	45.9	0.0	70.	70.	0 0.0	0.0	62.7	239.7
SP_261EA_C34BWGNON042_PRIME	042 3	16:17	043	01:17		0.0	17.0	86.4	3.2	0.0	16.0	27.5	0.0	42.	4 4.	9 0.0	0.0	0.0	197.5
DAILY TOTAL SCIENCE	042 (01:17	043	01:17		0.0	45.3	86.4	8.6	0.0	42.7	73.4	0.0	113.	2 4.	9 0.0	0.0	62.7	
OPPERATON NOD	042	01.17		00.00			40 E	~~ ~			45.0							107 6	600.0
OBSERVATION_NOR	044	01:17	044	10-42		0.0	10.0	20.0	9.0	0.0	10.0	/0.0	0.0	201.	5 U. A A	0 0.0		107.6	447.0
SP_261EA_M/OMETNON044_PRIME	044 1	03:02	044	10:47		0.0	14.0	/2.9	2.0	0.0	13.0	20.7	0.0	313.	3 1 . 			0.0	11/.3
SP_261EA_G/OMEINON044_PRIME	044 .	10:47	044	17:13		0.0	12.2	0.0	12.9	0.0	11.5	19.0	0.0	203.	1 3.			0.0	322.0
DAILY TOTAL SCIENCE	043 1	01:17	044	17:15		0.0	75.4	101.7	24.5	0.0	71.1	122.3	0.0	059.	8 7.	8 0.0	0.0	107.6	
OBSERVATION NOR	044 :	17:15	046	10:03		0.0	103.4	304.2	24.8	552.1	140.6	150.0	0.0	2161.	3 592.	4 1605.0	0.0	170.5	5804.3
SP_261EA_G70METNON046_PRIME	046	10:03	046	16:33		0.0	12.3	59.4	2.3	0.0	11.6	19.9	0.0	175.	73.	6 0.0	0.0	0.0	284.7
DAILY TOTAL SCIENCE	044 :	17:15	046	16:33	:	0.0	115.6	363.6	27.1	552.1	152.1	169.9	0.0	2337.	0 596.	0 1605.0	0.0	170.5	
																_			
OBSERVATION_NOR	046 :	16:33	047	14:03		0.0	40.6	28.8	7.7	73.5	38.2	65.8	0.0	101.	4 0.	0 5.0	0.0	89.9	450.9
SP_261EA_C70METNON047_PRIME	047 :	14:03	048	01:11		0.0	21.0	109.4	4.0	0.0	19.8	34.1	0.0	52.	5 6.	1 0.0	0.0	0.0	246.9
DAILY TOTAL SCIENCE	046 :	16:33	048	01:11		0.0	61.6	138.2	11.7	73.5	58.0	99.9	0.0	153.	9 6.	1 5.0	0.0	89.9	
					CAPS	с	DA	CIRS	INMS	133	MAG	MIM	I RA	DAR	RPWS	UVIS	VIMS	PROBE	
					(Mb)	0	Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	
				-															
TOTAL RECORDED (OPNAV data n	ot in	cluded))		0.0	32	9.0 1	776.3	80.5	625.6	366.4	538.	6 (0.0 3	576.4	619.8	1610.0	0.0	

Waypoint Selection

Good Waypoints

OBS_NAME	START	END	POS_X_2_NSP	POS_X_2_NEP	NEG_X_2_NSP	NEG_X_2_NEP	POS_Z_2_NSP	POS_Z_2_NEP	NEG_Z_2_NSP	NEG_Z_2_NEP	NEG_X_2_SUN	NEG_Z_2_EARTH
SP_260NA_OBSERV041_NA	2017-041T01:25:00	2017-041T16:17:00	**BAD**	**BAD**	OK	OK	OK	ОК	**BAD**	**BAD**	OK	**BAD**
SP_261NA_OBSERV042_NA	2017-042T01:17:00	2017-042T16:17:00	**BAD**	**BAD**	OK	OK	OK	ОК	**BAD**	**BAD**	OK	**BAD**
SP_261NA_OBSERV043_NA	2017-043T01:17:00	2017-044T03:02:00	**BAD**	**BAD**	ОК	ОК	OK	OK	**BAD**	**BAD**	ОК	**BAD**
SP_261NA_OBSERV044_NA	2017-044T17:15:00	2017-046T10:03:00	**BAD**									
SP_261NA_OBSERV046_NA	2017-046T16:33:00	2017-047T14:03:00	**BAD**	**BAD**	OK	OK	**BAD**	OK	**BAD**	**BAD**	OK	**BAD**

RBOT - Friendly

OBSERVATION PERIOD	START	END	POS_X	NEG_X	POS_Z	NEG_Z
SP_260NA_OBSERV041_NA	2017-041T01:25:00	2017-041T16:17:00	189.3/ 32.0		189.3/ 32.0	
SP_261NA_OBSERV042_NA	2017-042T01:17:00	2017-042T16:17:00	189.3/ 32.0		189.3/ 32.0	
SP_261NA_OBSERV043_NA	2017-043T01:17:00	2017-044T03:02:00	189.3/ 32.0		189.3/ 32.0	
SP_261NA_OBSERV044_NA	2017-044T17:15:00	2017-046T10:03:00				
SP_261NA_OBSERV046_NA	2017-046T16:33:00	2017-047T14:03:00			189.1/ 32.0	

Downlinks

DOWNLINK	START	END	POS_X_2_NSP	POS_X_2_NEP	NEG_X_2_NSP	NEG_X_2_NEP	POS_Y_2_NSP	POS_Y_2_NEP	NEG_Y_2_NSP	NEG_Y_2_NEP	ROLL_FLAG
SP_261EA_C34BWGNON041_PRIME	2017-041T16:17:00	2017-042T01:17:00	ОК	OK	ОК	ОК	**BAD**	**BAD**	OK	ОК	OK
SP_261EA_C34BWGNON042_PRIME	2017-042T16:17:00	2017-043T01:17:00	ОК	OK	OK	ОК	**BAD**	**BAD**	OK	ОК	73
SP_261EA_M70METNON044_PRIME	2017-044T03:02:00	2017-044T10:47:00	OK	OK	**BAD**	**BAD**	**BAD**	**BAD**	OK	ОК	0
SP_261EA_G70METNON044_PRIME	2017-044T10:47:00	2017-044T17:15:00	OK	OK	**BAD**	**BAD**	**BAD**	**BAD**	OK	ОК	0
SP_261EA_G70METNON046_PRIME	2017-046T10:03:00	2017-046T16:33:00	OK	OK	OK	OK	**BAD**	**BAD**	OK	ОК	OK
SP_261EA_C70METNON047_PRIME	2017-047T14:03:00	2017-048T01:11:00	ОК	OK	OK	ОК	**BAD**	**BAD**	**BAD**	**BAD**	OK

- NEG_Y to Saturn not safe from 2017-045T17:27 to 046T13:05 (ORS to Sun < 15 deg)
 - ORS to SUN angle < 12 deg from 2017-045T18:34 to 046T09:36
 - Minimum ORS to SUN angle is appx. 3.55 deg.

Waypoints Chosen

Saturn 261 Legacy

Waypoint 1 (2017-041T02:05 – 044T17:55): NAC to Saturn, NEG_X to NSP

Waypoint 3 (2017-045T02:51 – 046T02:32): No acceptable valid waypoint, custom period used.

Waypoint 2 (2017-044T17:55 – 045T02:51): NAC to Saturn, POS_Z to NSP

Waypoint 4 (2017-046T02:32 – 046T19:13): NAC to Saturn (0, 15, 20 deg. offset), POS_Z to NSP

K. Cloutier

Waypoints Chosen

Saturn 261 Legacy

Waypoint 5 (2017-046T19:13 – 048T01:51): NAC to Saturn, POS_Z to 189.1/32.0

Notes (1/3)

- Pointing:
 - Waypoints:
 - RBOT friendly waypoints used when compatible with science
 - No valid waypoint for Periapse Period (2017-044T17:55 046T02:32 SCET; Duration 001T08:37): Used custom
 period
 - Custom Period (2017-045T02:51 046T02:32 SCET)
 - CIRS and VIMS temperature/ boresight violations:
 - CIRS Max Temp = 77.1K (ΔT = 2.5K) @ 045T08:12 SCET (During ISS LIMBINT002)
 - CIRS provided approval via email (Paul Romani 8/04)
 - Operational FR Waiver will be required (See SPLAT item)
 - VIMS Max Temp = 63.25K (∆T = 3.59K) @ 045T08:30 SCET (During ISS LIMBINT002)
 - VIMS provided approval via email (Ed Audi/Kevin Baines 3/20)
 - Consumable FR Waiver will be required (See SPLAT item)
 - CIRS Boresight to Sun < 15° during DOY 045 046 (During VIMS SPOL / SSTRMLAT / SEQREG / SPOL Maps, SP WAYPTTURN, UVIS AURSTARE, & SP DLTURN)
 - CIRS Boresight to Sun < 12° occur only during Solar Occultation
 - CIRS provided approval via email (Paul Romani 3/21)
 - Operational FR Waiver will be required (see SPLAT item)
 - CMT Management & FR waiver required during the period 2017-045T21:55:55 046T02:03:35 SCET (See SPLAT item)
 - -Y to Sun < 12°
 - CMT Management required during VIMS_261SA_SPOLMAP002_PRIME and SP_261SA_WAYPTTURN046_PRIME
 - Sun occulted between 045T21:48:33 046T02:32:30 (from Tour Atlas)
 - Periapse Jumpstart of Merged PDT & AACS analysis for teams early PDT deliveries during 2017-044T00:52 046T18:33 (See SPLAT item)
 - Rate violations on DOY 045 @ 04:54 during ISS LIMBINT001. This is okay inside +/- 3hr of periapse per FRPO G&Cs.
 - There is a 19 min quiescent period carved out at the beginning of the ISS LIMBINT002 (045T06:56 07:15) for a bias (See SPLAT item)

Notes (2/3)

- Data Volume
 - No SMT warnings
 - SSR cleared before periapse observation period and at end of segment
- DSN
 - ap_downlink report check warnings can be ignored:
 - Ignore "Warning: 70m usage for sequence exceeds project commitment <=35%; is at 50%" ---necessary to clear SSR before and after periapse/end of segment. Downgraded 70 on DOY 044 to 34 during integration.
 - Ignore "Warning: number of sequence upload passes is 0; should be 5 or more" ---not the last segment in sequence
 - Note: the handover from M34HEFNON044 to G70METNON044 occurs on the 34M. This was done on purpose for better TLM rates/data volume return.
 - No level 3 requests, no OTMs
 - MAG Range 1 roll on DOY044
- Resource Checker
 - All gaps (3) can be ignored
 - Gap on 2017-044T03:02 03:17 SCET (dur = 15 min) expected (due to downgrade to M34)
 - Gap on 2017-044T22:46 22:51 SCET (dur = 5 min) expected
 - Gap on 2017-046T07:43 07:53 SCET (dur = 10 min) expected
- Opmodes
 - None
- Hydrazine
 - N/A

Notes (3/3)

- Special Activities
 - Collaborative PRIME/RIDER activities:
 - UVIS_261SA_AURDSTARE001_PRIME Collab w/ VIMS
 - UVIS_261SA_AURSLEW001_PRIME Collab w/ VIMS
 - VIMS_261SA_GAMCRUOCC001_PIE Collab w/ CIRS
 - VIMS_261RI_SOLAROCC001_PRIME Collab w/ UVIS
 - UVIS 261SA AURSTARE001 PRIME Collab w/ VIMS
 - UVIS_261SA_AURSLEW002_PRIME Collab w/ VIMS
 - PIES:
 - VIMS_261SA_GAMCRUOCC001_PIE (044T20:36)
 - CIRS_261SA_REGMAP001_PIE (044T22:51)
 - CDA_261DR_FRING001_PIE (045T04:56)
 - CIRS_261SA_REGMAP002_PIE (045T08:36)
 - MAG Range 1 Roll (DOY 044)
 - -Y to Sun CMT management and flight rule waivers required (mentioned in pointing area)

Liens (1/2)

Sequence Liens (should all be SPLAT items):

- Target Motion Violations
 - None
- -Y to Sun < 12° CMT Management + FR waiver required during the period 2017-045T21:55:55 046T02:03:35 SCET
 - CMT Management required during VIMS_261SA_SPOLMAP002_PRIME and SP_261SA_WAYPTTURN046_PRIME
 Sun occulted between 045T21:48:33 046T02:32:30 (from Tour Atlas)
 - •CIRS heating violation **Operational FR waiver** required during ISS LIMBINT002
 - CIRS Max Temp = 77.1K (ΔT = 2.5K) @ 045T08:12 SCET
 - CIRS provided approval via email (Paul Romani 8/04)
 - •VIMS heating violation **Consumable FR waiver** required during ISS LIMBINT002
 - VIMS Max Temp = 63.25K (ΔT = 3.59K) @ 045T08:30 SCET
 VIMS provided approval via email (Ed Audi/Kevin Baines 3/20)
- CIRS Boresight to Sun < 15° Operational FR waiver required during DOY 045 046 during VIMS SPOL / SSTRMLAT / SEQREG / SPOL Maps, SP WAYPTTURN, UVIS AURSTARE, & SP DLTURN
 - CIRS Boresight to Sun < 12° occur only during Solar Occultation
 - CIRS provided approval via email (Paul Romani 3/21)

Liens (2/2)

Saturn 261 Legacy

Sequence Liens (should all be SPLAT items):

• The following science requests from 2017-044T00:52 – 046T18:33 in Saturn_261 have been designed in PDT during integration. Teams identified shall deliver these designs as part of the Port 1 delivery; SIP leads to monitor.

VIMS_261SA_NPOLMAP001_PRIME

VIMS_261SA_GAMCRUOCC001_PIE

CIRS_261SA_REGMAP001_PIE

ISS_261SA_LIMBINT001_PRIME

CDA_261DR_FRING001_PIE

ISS_261SA_LIMBINT002_PRIME

CIRS_261SA_REGMAP002_PIE

VIMS_261SA_SPOLMAP001_PRIME

VIMS_261SA_SSTRMLAT001_PRIME

VIMS_261SA_SEQREGMAP001_PRIME

VIMS_261SA_SPOLMAP002_PRIME

VIMS_261RI_SOLAROCC001_PRIME

UVIS_261SA_AURSTARE001_PRIME

There is a 19 min window carved out at the beginning of the ISS LIMBINT002 (045T06:56 – 07:15) for a bias, see RBOT slides

- -Y to Sun CMT Management and <12° boresight to sun flight rule waivers will be needed for the VIMS South Pole Maps on DOY 045/046 and the SP WAYPT Turn on DOY 046 during the solar occultation
 - Time of Saturn Solar Occultation is from the tour atlas.
 - Timing uncertainty is <u>+</u> 1.4 minutes as determined using Brad Wallis' "ask_carnac.pro" with a total of <u>+</u> 7 minutes pad recommended

AACS evaluation of Saturn_261 Jumpstart by David Bates

•Carving out 19 minutes for a bias before the first turn in ISS_261SA_LIMBINT002_PRIME should solve most of the problems and avoid the tweaks below:

- Large tweak needed in the middle of two observations
 - 2017-045T01:12 UVIS_279SA_AURSLEW001_PIE
 - 2017-045T10:55 CIRS_261SA_REGMAP002_PIE
 - And two more tweaks
 - 2017-046T02:32 VIMS_261RI_SOLAROCC001_PRIME
 - 2017-046T06:59 UVIS_261SA_AURSTARE001_PRIME

•Even with the bias during the ISS LIMBINT002, CIRS_261SA_REGMAP001 and CIRS_261SA_REGMAP002 will still need tweaks

 Would require at least another bias to clean it up, maybe two. There are already two biases in this Rev, so Dave is not sure if we want to insert more biases or tweak the observations