

Science Planning & Sequence Team

SATURN TARGET WORKING TEAM

Rev 264 Segment Legacy Package

Segment Boundary: March 6, 2017 – March 9, 2017 2017-065T20:35:00 – 2017-068T23:43:00 (SCET)

Integration Began 04/11/2016 Segment Delivered to S98 Sequence 08/08/2016 Lead Integrator was Martin Brennan

Legacy Package Assembled by Martin Brennan

Table of Contents

•	Segment Overview and Final Products	3 - 13
	- Summary	4
	- Final Sequenced SPASS (Science Planning Attitude Strategy Spreadsheet)	5
	 Final Sequenced SMT (SSR Management Tool) Reports 	6
	- Segment Geometry	7 - 8
	Overview	7
	Solar Geometry ORS Boresight Concerns	8
	 Periapse Quicklooks 	9 - 10
	 Daily Science Highlights 	11 - 13
•	Segment Integration Planning	14 - 26
	 Timeline Gaps & Suggested Observations 	15
	 Initial SMT (SSR Management Tool) Reports 	16
	 Waypoint Selection 	17 - 19
	Options Considered	17
	Waypoints Chosen	18 - 19
	 Sequence handoff notes 	20 - 21
	 Liens on sequence development/execution 	22 - 23
	 Dual Playback Diagram 	24
	 Constraint Management 	25
	 RBOT summary 	26

Segment Overview and Final Products

• Saturn 264 is a periapse segment within the F-Ring Orbits period, having a periapse of 2.439 R_s , starting ~1 day before perikrone and ends ~2 days after.

• The high inclination F-Ring segment begins on the night side, approaching the N. Pole, then passes through perikrone on the day side, where the POST science was planned, including a VIMS/CIRS He/H2 ratio measurement (CIRS NADIROCC and VIMS GAMCRUOCC) and the highest resolution satellite Pan observation of the mission.

• The Pan observation warranted a Dual Playback of 473Mb.

• This was an extremely contentious data volume segment. After all of the Jumpstart periapse observation period's activities were populated into CIMS, the segment was found to have nearly 4Gb of oversubscribed data. Multiple rounds of data cuts were required, including cuts to PIE observations and dropping riders.

• The magnitude of the Dual Playback led to carryover into the next XD segment (XD 264/265), but was accepted by the XD Leads.

• CMT management during Solar Occultation: NEG_Y to Sun angle $< 12^{\circ}$ is allowed to occur only when the Sun is behind Saturn, in order to enable the acquisition of high-phase observations.

• The pre-integration placement of the ISS Enceladus Plume activity did not allow time for a downlink turn after the activity, therefore the downlink attitude was established before the EN Plume PIE.

• This segment contained a "jumpstart" period. Due to the challenging geometry and unique science of this phase of the mission, the timeline for the days around periapse was decided in advance of full segment integration. Detailed pointing analysis, constraint checking, and reaction-wheel bias optimization (RBOT) was performed on the periapse period. Changes were required, see RBOT summary on page 26.

Final Sequenced SPASS

Saturn 264 Legacy

	Request	Riders	Start (SCET)	StDuration	End	Primary	Secondary	Comments
	Sequence S98, length = 70 days		2017-034T07:05:00	070T07:50:00	2017-104T14:55:00			
	SATURN 264 Segment		2017-065T20:35:00	003T03:08:00	2017-068T23:43:00			
	SP 264SA WAYPTTURN065 PRIME		2017-065T20:35:00	000T00:44:00	2017-065T21:19:00	ISS NAC to Saturn	POS Z to NSP	
	NEW WAYPOINT		2017-065T21:19:00	001T12:21:00	2017-067T09:40:00	ISS NAC to Saturn	POS Z to NSP	
	UVIS 264SA AURDSTARE001 PRIME	I, V	2017-065T21:19:00	000T01:45:00	2017-065T23:04:00	VIMS IR to Saturn North Pole	POS Z to NSP	Collaborative Rider(s): VIMS. collaborate with VIMS
	CIRS 264SA NADIROCC001 PIE		2017-065T23:04:00	000T02:00:00	2017-066T01:04:00	CIRS FP4 to Saturn	POS Z to NSP	PIE, Track occ lat=0, lon=40; verify Gam Cru lat, lon with Phil
	VIMS 264SA NPOLMAP001 PRIME	C, I, U	2017-066T01:04:00	000T06:00:00	2017-066T07:04:00	ISS NAC to Saturn North Pole	POS Z to NSP	
	VIMS 264RI GAMCRUOCC001 PIE	C. E. I. U	2017-066T07:04:00	000T02:46:00	2017-066T09:50:00	VIMS IR to 187.791/-57.113	POS_Z to NSP	
	VIMS 264SA GAMCRUOCC001 PIE	C	2017-066T09:50:00	000T01:24:00	2017-066T11:14:00	VIMS IR to 187.791/-57.113	POS Z to NSP	Collaborative Rider(s): CIRS
	Begin Custom		2017-066T11:14:00	000T00:00:01	2017-066T11:14:01	ISS NAC to Saturn	POS Z to NSP	
	CIRS_264SA_LIMBINT001_PRIME	I, M, U	2017-066T11:14:00	000T05:21:00	2017-066T16:35:00	CIRS_FPB to Saturn	PIC	Pick up at ISS_NAC to Saturn, POS_Z to NSP; Hand off at ISS_NAC to Pan, NEG_Z to Sun.
	Begin Dual Playback Science		2017-066T16:35:00	000T00:00:01	2017-066T16:35:01			
	ISS_264PN_PAN001_PIE	C, M, U, V	2017-066T16:35:00	000T02:30:00	2017-066T19:05:00	ISS_NAC to Pan	NEG_Z to Sun	Collaborative Rider(s): CIRS. Pick up at ISS_NAC to Pan, NEG_Z to Sun; Hand off at ISS_NAC to Saturn, NEG_Z to NSP.
L	Periapse R = 2.439 Rs, lat		2017-066T18:30:53	000T00:00:01	2017-066T18:30:54			
L	End Dual Playback Science		2017-066T18:51:30	000T00:00:01	2017-066T18:51:31			
	ISS_264SA_LIMBINT001_PRIME	M, U, V	2017-066T19:05:00	000T01:26:00	2017-066T20:31:00	ISS_NAC to Saturn	NEG_Z to NSP	Pick up at ISS_NAC to Saturn, NEG_Z to NSP; Hand off at CIRS_FPB to Saturn, NEG_Z to NSP.
	CIRS_264SA_LIMBMAP001_PIE	I, U	2017-066T20:31:00	000T06:00:00	2017-067T02:31:00	CIRS_FPB to Saturn	PIC	Pick up at CIRS_FPB to Saturn, NEG_Z to NSP; Hand off at ISS_NAC to Saturn, NEG_Z to NSP. Saturn Equator - 10N, North limb
·	VIMS_264SA_SPOLMAP001_PRIME	C, U	2017-067T02:31:00	000T02:29:00	2017-067T05:00:00	ISS_NAC to Saturn	NEG_Z to NSP	Pick up at ISS_NAC to Saturn, NEG_Z to NSP; Hand off at ISS_NAC to Saturn, NEG_Z to NSP.
	VIMS_264SA_SSTRMLAT001_PRIME	U	2017-067T05:00:00	000T01:36:00	2017-067T06:36:00	ISS_NAC to Saturn	NEG_Z to NSP	Pick up at ISS_NAC to Saturn, NEG_Z to NSP; Hand off at ISS_NAC to Saturn (0.286,0.0,0.573 deg. offset), NEG_Z to
	VIMS_264SA_SEQREGMAP001_PRIME	U	2017-067T06:36:00	000T02:24:00	2017-067T09:00:00	ISS_NAC to Saturn	NEG_Z to NSP	Pick up at ISS_NAC to Saturn (0.286,0.0,0.573 deg. offset), NEG_Z to NSP;
	SP_264SU_WAYPTTURN067_PRIME		2017-067T09:00:00	000T00:40:00	2017-067T09:40:00	UVIS_SOL_OFF to Sun	POS_Z to NSP	Pick up at ISS_NAC to Saturn (10.0,5.0,0.0 deg. offset), NEG_Z to NSP; Hand off at UVIS_SOL_OFF to Sun, POS_Z to NSP.
	NEW WAYPOINT		2017-067T09:40:00	000T06:29:00	2017-067T16:09:00	UVIS_SOL_OFF to Sun	POS_Z to NSP	
	End Custom		2017-067T09:40:00	000T00:00:01	2017-067T09:40:01	UVIS_SOL_OFF to Sun	POS_Z to NSP	
	ISS_264RI_HIPHASEFB001_PRIME	V	2017-067T09:40:00	000T01:00:00	2017-067T10:40:00	ISS_NAC to Rings	POS_Z to NSP	No Preference to secondary pointing. No Preference to secondary
	ISS_264SA_LIMBINT002_PRIME	U, V	2017-067T10:40:00	000T00:30:00	2017-067T11:10:00	ISS_NAC to Saturn	POS_Z to NSP	
	UVIS_264SA_AURSTARE001_PRIME	I, V	2017-067T11:10:00	000T02:41:00	2017-067T13:51:00	UVIS_FUV to Saturn	POS_Z to NSP	Collaborative Rider(s): VIMS. Slew/stare, collaborate with VIMS
	ISS_264SA_LIMBINT003_PRIME	U, V	2017-067T13:51:00	000T00:30:00	2017-067T14:21:00	ISS_NAC to Saturn	POS_Z to NSP	
ſ	SS_264RI_HIPHASEFB002_PRIME	V	2017-067T14:21:00	000T01:24:00	2017-067T15:45:00	ISS_NAC to Rings	POS_Z to NSP	No Preference to secondary pointing. No Preference to secondary
	SP 264EA DLTURN067 PRIME		2017-067T15:45:00	000T00:24:00	2017-067T16:09:00	XBAND to Earth	NEG X to NEP	
	NEW WAYPOINT		2017-067T16:09:00	000T10:11:00	2017-068T02:20:00	XBAND to Earth	NEG_X to NEP	
	ENGR_264SC_KPTYBIAS067_PRIME		2017-067T16:09:00	000T01:30:00	2017-067T17:39:00	NEG_Z to DELTA_H (0.0,0.0,-58.0 deg. offset)	NEG_X to Sun	
	SP_264EA_C70METNON067_PRIME	С	2017-067T17:55:00	000T07:55:00	2017-068T01:50:00	XBAND to Earth	Rolling	
	Pointer Reset in preparatio		2017-068T01:50:00	000T00:00:01	2017-068T01:50:01			
	SP_264SA_WAYPTTURN068_PRIME		2017-068T01:50:00	000T00:30:00	2017-068T02:20:00	CIRS_FP1 to Saturn	POS_Z to NSP	
	NEW WAYPOINT		2017-068T02:20:00	000T08:45:00	2017-068T11:05:00	CIRS_FP1 to Saturn	POS_Z to NSP	
	CIRS_264SA_COMPSIT002_PRIME	V	2017-068T02:20:00	000T08:15:00	2017-068T10:35:00	CIRS_FP1 to Saturn	POS_Z to NSP	Collaborative Rider(s): VIMS
	SP_264EA_DLTURN468_PRIME		2017-068T10:35:00	000T00:30:00	2017-068T11:05:00	XBAND to Earth	NEG_X to 275.0/67.0	
	NEW WAYPOINT		2017-068T11:05:00	000T13:05:00	2017-069T00:10:00	XBAND to Earth	NEG_X to 275.0/67.0	
	SP_264EA_YGAP068_PRIME		2017-068T11:05:00	000T01:30:00	2017-068T12:35:00	XBAND to Earth	NEG_X to 275.0/67.0	
ſ	ISS_264EN_PLUME001_PIE	C, U, V	2017-068T12:35:00	000T02:08:00	2017-068T14:43:00	ISS_NAC to Enceladus	NEG_X to NSP	SOST PIE
	SP_264EA_C70METNON068_PRIME	С	2017-068T14:43:00	000T09:00:00	2017-068T23:43:00	XBAND to Earth	NEG_X to 275.0/67.0	CDA. NEG_X to 275/67
М	artin Bronnan	D	<u> </u>	T				00/20/2017

Gap 1

) cience planning & equence eam

ייקר. איי

5

JU/ZU I /

Saturn 264 Legacy

DATA VOLUME SUMMARY --- TRANSFER FRAME OVERHEAD INCLUDED (80 BITS PER 8800-BIT FRAME)

					OBS	ERVATIO)N_PERI(DD		DOWNLINK_PASS									
						P4			P5	RECC	RDED			PLAYB	ACK				
DOWNLINK PASS NAME	Start	End	START	SCI	HK+E	TOTAL	CPACTY	MRGN	OPNAV	SCI	ENGR	TOTAL	CPACTY	MARGN	NET_M/	ARGN	CAROVR		
	doy hh:mm	doy hh:mm	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(Mb)	(%)	(Mb)		
SP_264EA_C70METNON067_PRIME	067 17:55	068 01:50	0	3123	192	3315	3322	7	0	457	47	3818	2456 ·	-1363	169	1%	1363		
SP_264EA_C70METNON068_PRIME	068 14:43	068 23:43	1363	1736	54	3153	3322	169	0	521	53	3727	3310	-418	630	5%	418		

DATA VOLUME REPORT --- TRANSFER FRAME OVERHEAD NOT INCLUDED

Event	Start doy hh:mm	End doy hh:mm	CAPS (Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	ENGR (Mb)	TOTAL (Mb)
OBSERVATION_NOR SP_264EA_C70METNON067_PRIME DAILY TOTAL SCIENCE	065 20:35 067 17:55 065 20:35	067 17:55 068 01:50 068 01:50	0.0 0.0 0.0	81.2 14.9 96.2	316.9 74.7 391.6	26.4 2.9 29.2	1151.9 0.0 1151.9	74.1 14.1 88.2	125.0 20.0 145.0	0.0 0.0 0.0	250.5 322.1 572.6	309.7 4.3 314.1	759.0 0.0 759.0	0.0 0.0 0.0	189.5 0.0 189.5	3284.3 452.9
OBSERVATION_NOR SP_264EA_C70METNON068_PRIME DAILY TOTAL SCIENCE	068 01:50 068 14:43 068 01:50	068 14:43 068 23:43 068 23:43	0.0 0.0 0.0	24.3 17.0 41.3	149.5 86.4 235.9	4.6 3.2 7.9	200.0 0.0 200.0	22.9 16.0 38.9	32.5 22.7 55.1	0.0 0.0 0.0	524.6 366.4 891.0	16.2 4.9 21.2	272.5 0.0 272.5	0.0 0.0 0.0	526.6 0.0 526.6	1773.7 516.7

Segment Geometry

Saturn	264 l	_egacy
--------	-------	--------

2017 MAR 06 20:35:00 UTC 23:6" field of view. NER Rom			2017 - 065T20135100 SCHT 2017 MAR 06 21159143 ERT 2017 MAR 06 21159143 ERT Periapse_204 + 002T16102151 Periapse_204 + 002T16102151 Uight time: 04.7 min Orbit period: 7.2 days Radius 731019 km 12.13 Rm Radius 731019 km 12.13 Rm Radius 731019 km 12.13 Rm Radius 731019 km 12.13 Rm Radius 731019 km 11.09 Rm Scentricity 0.795	 (Seg 264
			Inclination 6.55 deg Sun_range 10.05 AU Barth_range 10.19 AU 	I Seg 264
Solar Syritem Simulator v\$ 0 Point NEG_Y ≎ at SATURN User vector - RA: +122.168 DEC: -9-385 Let	Str Str	0 with NSP 0 1 Out ✓ Labels ✓ Axes reen Orbits ✓ Vectors	EBC -41.018 deg Crosenes PR 0.000 Rs EFS 5.568 deg SEP 79.414 deg ORS F/a angle 78.64 deg ORS rad angle 40.2 deg Year Hour Month Hour	View of SATURN from CASSINI 2017 MAR 09 23:43:00 UTC NEP NOT 14.9" field of view 1 1 Rom
Paste Current RA/DEC	age Down ✓ Hi Res Zoo	m In V FOVs Lat/Ions	Day Second	MIMAS
Turn analyzer: SATURN 🗘 to	EARTH I about Z I	on RWA 🗘 = 8.6 min / 75.6 deg	Event	
BODY OCC? OCC? (km) (Rs)	ALTITUDEPHASE ANGLR(km) (Rs) (deg) (deg	DIAMETER SUB_S/C ALON VREL mrad) LON LAT (deg) (km/s)	Z_HGHTANGLEFROM (km) SATRN EARTH RAM	
SATURN 731019 12.1 MIMAS 66383 14.4 ENCELADUS 627513 10.4 TTHYS 682762 14.6 DIONE 104574 17.3 RHEA 1165715 19.3 TITAN 104574 17.3 RHEA 139685 23.2 IAFETUS 347966 57.7 FNCEEE 14921752 247.5	3 673222 11.17 101.4 9.46 1 068161 14.41 103.7 0.03 1 627263 10.41 101.5 0.05 5 062248 14.64 94.6 0.07 5 1045011 17.94 11.21 0.06 4 1164949 19.33 107.4 0.08 804024 13.55 47.6 0.37 1 398745 23.21 123.2 0.01 4 3479221 57.73 20.5 0.02 9 14921642 247.59 169.5 0.00	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	User Solar System Simulator v4.0
SATURN 731019 12.1	3 673222 11.17 101.4 9.46	165.07 275 41 0 7.1	0 0.0 75.6 45.8	Point NEG_Y
	Saturn Range	Phase Angle	Sub-S/C Lat.	User vector - RA: +122.168 Tilt L Up DEC: -9.385 Left Reset Paste Current RA/DEC Image Down
Segment Start	12.13	101.4	41	Turn analyzer: SATURN is to EARTH is solved and the second
Periapse	2.44	42.1	-9	SATURN 1155676 19.18 1095427 16.1 MIMAS 974489 16.17 974283 16.1 MIMAS 93487 16.18 1095427 16.18
Segment End	19.18	151.8	-3	TETHYS 1409063 23.38 1408525 23.3 DIONE 1287853 21.37 1287292 21.3 RHEA 1474924 24.47 1474159 24.4

End (below) Rev 264 OUTBOUND 2017 - 068T23:43:00 SCET 2017 MAR 09 23:43:00 SCET 2017 MAR 10 01:07:20 ERT Apoapse__264 + 005T19:10:51 Periapse_264 + 002T05:12:06 Light time: 84.3 min Orbit period: 7.2 days Radius 1155678 km 19.18 Rs Rad_cyl 1153955 km 19.15 Rs Z_ht_cyl -63080 km -1.05 Rs Mag L 19.23 Semi axs 716655 km 11.89 Rs Eccentricity 0.795 Inclination 63.56 deg Sun range 10.06 AU Earth range 10.14 AU --- DSN ELEV -- D/L -- U/L ------HYPERION Goldstone -68.6 -35.3 Canberra 31.1 64.9 Madrid -11.6 -43.3 ----- LOOK DIRECTION INFO --SATURN · FOV 14.9 deg 260.5 mrad RA 98.567 deg DEC -0.293 deg Crosses_RP_0 0.000 Rs EPS 5.616 deg * SEP 82.403 deg ORS b/s angle 28.2 deg POS_X ᅌ = Up ᅌ with NSP 0 ORS rad angle 66.3 deg Tilt R Zoom Out Labels 🔽 Axes Year 4 1 4.1 Hour Right Fill Screen Orbits 🔽 Vectors Month 4 1 4.1 Minute Hi Res Zoom In FOVs Second Lat/lons Day 🔺 🕨 4 1 about Z ᅌ on 🛛 RWA = 4.7 min / 25.2 deg Event 🔺 🕨 PHASE ANGLE DIAMETER SUB S/C ALON VREL Z HGHT ANGLE FROM (deg) mrad) LON LAT (deg) (km/s) SATRN EARTH RAM (deg ()cm) 151.8 5.98 104.35 321 -3 3.6 0.0 25.2 114.0 150.9 162 -5 4702 0.02 0.43 15 12.7 2.9 25.5 111.1 152.2 0.37 356 -3 -171 0.02 14.5 25 1.7 25.1 115.7 154.2 0.04 0.77 333 -2 -146 -1550 6.8 24.1 120.2 14.0 140.5 0.88 61 -3 102 -167 0.05 8.4 16.6 34.7 99.3 -- -- 1474924 24.47 1474159 24.46 155.8 0.06 1.04 319 -2 -118 11.4 3187 18.5 25.3 130.0 TITAN -- -- 1907216 31.65 1904641 31.60 148.4 0.15 2.70 321 -2 -108 8.7 1171 36.5 35.5 144.0 HYPERION -- -- 2519463 41.80 2519327 0.13 225 35 -171 25592 5.1 24.9 118.9 41.80 153.0 0.01 7.8 IAPETUS -- ---847587 2521315 41.84 2520568 41.82 10.4 0.03 0.59 12 6 15 3.8 153.3 165.6 57.2 -- -- 15760620 261.51 15760507 34.3 16.9 121.9 PHOEBE 261.51 168.4 0.00 0.01 160 -23 -149 3.2 6283946

18.18 151.8 5.98 104.35 321 -3

Start (Left)

Martin Brennan

0.0 25.2 114.0

0

0 3.6

SATURN

-- -- 1155678 19.18 1095427

CMT Violation Geometry

View of SATURN 2017 MAR 08 0 48.7° field of vi	from)6:39:0 iew	CASSINI DO UTC RC					+9	P	Path	of	Sun	MIMAS FZ	Rev 264 007 2017 HAR 06 2017 HAR 06 2017 HAR 07 2017 H	TEDUND 7T06:39:0 3 06:39:1 3 06:39:1 54 + 0044 54 + 102:0 : 84.5 od: 7.2 393341 393341 13:32 716667 :	00 SCET 10 SCET 13 ERT 102:06:5 18:06 18:06 18:06 19:05 15:5 19	51 8.27 Rs 6.53 Rs -5.08 Rs 11.89 Rs
Solar System Si Point NEG_Y	imulat.	User or v4.0 at SATUR	EAR	NUS SUN	ME NCO RY	5_X ♀	ATURN PHO	DEBE	with	NSP			Canberra Canberra Inderid COV RA DEC Crosses_RP_ CPS SEP DRS b/s ang DRS b/s ang	-17.6 -31.6 25.7 0K DIREC 48.7 74.8 32.6 0.0 5.5 80.7 gle 101.1	5 -32.1 5 -13.5 7 22.8 710N IN 7 deg 8 817 deg 638 deg 900 Rs 592 deg 783 deg 1 deg 4 . deg	; 30 350.8 mrad *
User vector - RA:	+122	.168	Tilt L	Up		t R	Zoo	m Out		Labels	🗹 Axe	s	Year 🖪		• •	Hour
DEC:	-9	.385	Left	Reset	t Ri	ght	Fill S	creen	\Box	Orbits	Vec	tors	Month		• •	Minute
Paste Curre	nt RA/I	DEC	🗹 Imag	ge Down	- 🛛 F	li Res	Zoo	om In	V FO	Vs	🗹 Lat/	lons	Day ┥		• •	Second
Turn analyzer: S	ATURN	4	to E	ARTH	ᅌ at	out Z	0	on RW	A	≎ = :	3.6 min /	/ 14.8 deg	1	Event	• •]
S/C BODY OCC3	SAT ? OCC?	RAN (km)	GE (Rs)	ALTI (km)	TUDE (Rs)	PHASE (deg)	ANGLR_ (deg	DIAMETER mrad)	SUB	_S/C LAT	ALON (deg)	VREL (km/s)	Z_HGHT (km)	ANG SATRN	LEF EARTH	ROM RAM
SATURN MIMAS ENCELADUS TETHYS DIONE RHEA TITAN HYPERION IAPETUS	 	498470 485637 588957 741235 466026 332186 1279428 1720092 3161202	8.27 8.06 9.77 12.30 7.73 5.51 21.23 28.54 52.45	440392 485442 588704 740697 465465 331423 1276853 1719962 3160455	7.31 8.05 9.77 12.29 7.72 5.50 21.19 28.54 52.44	168.0 149.9 151.3 175.6 124.9 92.8 106.9 153.4 19.3	13.89 0.05 0.05 0.08 0.14 0.26 0.23 0.01 0.03	242.40 0.85 0.87 1.46 2.42 4.62 4.03 0.19 0.47) 34 5 281 7 314 5 13 2 295 2 356 3 339 9 146 7 7	-38 -41 -31 -24 -41 -66 -14 48 -4	0 -71 -103 159 -54 -2 -89 -157 2	10.0 22.8 22.5 15.1 17.5 10.8 15.4 14.6 9.4	0 233 4 -4255 102 -2615 -4572 19573 -779077	0.0 21.8 23.5 15.8 46.0 75.8 68.1 31.3 150.6	14.8 35.0 34.1 3.3 59.9 87.4 78.6 31.4 158.1	136.3 144.0 151.8 137.9 132.5 74.3 135.6 166.3 27.4
PHOEBE		15309093	254.02	15308979	254.02	167.9	0.00	0.02	3 6	-25	-171	9.4	6328342	14.1	17.6	150.0

Saturn 264 Legacy

 Pointing to NEG_Y to Saturn (center) would lead to a CMT (<12°) violation between ~2017-067T06:38:07 and ~2017-067T22:22:36.

 Minimum NEG_Y to Sun angle is ~2.5° at ~2017-067T12:28:00.

 Between 067T06:39 – 09:00 observing above the Equator (northern limb) brings one out of the 12° cone, but not the 15° cone A waiver will be required.

 Cannot observe Saturn from 067T09:00 – 09:38, therefore perform Waypoint turn, ending custom period

•Between 067T09:38:14 - 15:20:30 Sun is behind Saturn, CMT management allows NEG_Y to Saturn for limb observations. A waiver will be required.

 Cannot observe Saturn from ~067T15:20 – 18:00, therefore observe Ring at Hi-Phase (067T14:21 - 15:45), then NEG Y to Earth for YGAP/Downlink (067T15:45 - 068T01:50)

Periapse Quicklooks (1/2)

•

Saturn 264 Legacy

UVIS_264SA_AURDSTARE001_PRIME	
CIRS_264SA_NADIROCC001_PIE	
VIMS_264SA_NPOLMAP001_PRIME	
VIMS_264RI_GAMCRUOCC001_PIE	
VIMS_264SA_GAMCRUOCC001_PIE	ł
Begin Custom	
CIRS_264SA_LIMBINT001_PRIME	
Begin Dual Playback Science	
ISS_264PN_PAN001_PIE	
Periapse R = 2.439 Rs, lat	
End Dual Playback Science	
ISS_264SA_LIMBINT001_PRIME	
CIRS_264SA_LIMBMAP001_PIE	
VIMS_264SA_SPOLMAP001_PRIME	
VIMS_264SA_SSTRMLAT001_PRIME	
VIMS_264SA_SEQREGMAP001_PRIME	
SP_264SU_WAYPTTURN067_PRIME	
End Custom	
ISS_264RI_HIPHASEFB001_PRIME	
ISS_264SA_LIMBINT002_PRIME	
UVIS_264SA_AURSTARE001_PRIME	
ISS_264SA_LIMBINT003_PRIME	
ISS_264RI_HIPHASEFB002_PRIME	

- UVIS had a collaborative observation (AURDSTARE) with VIMS, using a fixed stare-type pointing at the day-side illuminated northern Saturn auroral oval
 - CIRS NADIROCC PIE worked in combination with the following VIMSGAMCRUOCC PIE activity in order to determine Saturn's helium abundance.The CIRS NADIROCC was to yield the temperature at the same latitude (1 degSouth) and longitude of the VIMS Gamma Crucis stellar occultation point.
- VIMS performed four 3x3 mosaics of Saturn's North Pole region.
- VIMS tracked the star Gamma Crucis for 4 hours during a back-to-back ingress occultation of the F-D Rings and then Saturn. This type of Ring occultation provided the best-quality profiles of dense regions in the B ring.
- The VIMS Saturn occultation yielded T/mu near the 1 mbar level, which, in combination with the temperature data from the prior CIRS NADIROCC, solves for mu (the mean molecular weight of the atmosphere) and thus significantly constrains the helium abundance.
- CIRS performed a high resolution Saturn illuminated limb integration (LIMBINT) with mid-IR sounding to obtain stratospheric thermal structure. This unique configuration and proximity to Saturn (between 6 and 3 Rs) provided a vertical profile of temperature and hydrocarbon abundances throughout Saturn's stratosphere.
- ISS captured high resolution images of the ring moon Pan, providing images about eight times better than the previous best. The shape and surface morphology of the equatorial bands on the ring-related satellites are important for constraining satellite-ring relationships. With other images of Atlas and Daphnis acquired in 2017, knowledge of the similarities and differences of the details of the ring moons are an order-of-magnitude improvement over earlier data. This high value data was preserved in a dual playback plan.

Periapse Quicklooks (2/2)

Saturn 264 Legacy

- UVIS 264SA AURDSTARE001 PRIME CIRS 264SA NADIROCC001 PIE VIMS_264SA_NPOLMAP001_PRIME VIMS 264RI GAMCRUOCC001 PIE VIMS 264SA GAMCRUOCC001 PIE **Begin Custom** CIRS_264SA_LIMBINT001_PRIME ISS_264PN_PAN001_PIE Periapse R = 2.439 Rs, lat ... ISS_264SA_LIMBINT001_PRIME CIRS_264SA_LIMBMAP001_PIE VIMS_264SA_SPOLMAP001_PRIME VIMS_264SA_SSTRMLAT001_PRIME VIMS_264SA_SEQREGMAP001_PRIME SP 264SU WAYPTTURN067 PRIME **End Custom** ISS_264RI_HIPHASEFB001_PRIME ISS 264SA LIMBINT002 PRIME UVIS_264SA_AURSTARE001_PRIME ISS_264SA_LIMBINT003_PRIME ISS_264RI_HIPHASEFB002_PRIME
- ISS performed an integration of images along the Saturn bright limb (LIMBINT) studying the composition of the high atmosphere
- CIRS did a Saturn limb mapping (LIMBMAP) PIE at10 deg N. latitude. CIRS placed their arrays at 100, 400, and 700 km above the 1-bar level on Saturn. This allowed us to derive the vertical profile of temperature from 10 microbars to 10 millibars in Saturn's atmosphere. We will study Saturn's QQO (quasi-quadrennial oscillation) in which the equatorial temperature changes over several Earth years due to vertical motion in the stratosphere.
- VIMS began a series of observations; the first of which is completing 2 Saturn South Pole Mapping mosaics (SPOLMAP). This was followed by a look at Saturn's South Storm Alley (SSTRMLAT), imaging a mosaic of the entire regional band centered at 35 deg S. latitude. As Cassini quickly reached out >9 Saturn radii from the planet, the equator was in better view and VIMS completed its series with mapping mosaics of the South Equatorial region (SEQREGMAP) centered at 5 deg S. latitude.
- ISS had a series of Rings and Saturn observations surrounding the Sun's occultation behind Saturn. Leading into the Saturn Solar occultation ingress, ISS observed the faint Rings at high phase angles (HIPHASE). While the Sun is behind Saturn, ISS completed a Limb Integration by taking images along Saturn's bright limb studying the composition of the high atmosphere.
- UVIS now took the lead with an observation of the dark Southern Auroral Oval of Saturn (AURSTARE). This was a collaborative activity with VIMS, where the first half was a fixed stare pointing to support VIMS and ISS imaging followed by repeated slews across the 55-90 deg S. latitude auroral oval region.
- ISS then repeated its Saturn LIMBINT and Rings HIPHASE observations as the Sun emerged from behind Saturn.

Daily Science Highlights (1/3)

6 Mar 2017 (DOY 065): The Saturn 263 segment began with a UVIS collaborative observation (AURDSTARE) with VIMS, staring at the day-side illuminated northern Saturn auroral oval for 1.75 hours; ISS rode along to monitor day-side clouds with the WAC as a WINDS-type observation. Next was the 2 hour long CIRS NADIROCC PIE that was of highest priority for this orbit, where the combination of CIRS NADIROCC PIE and VIMS GAMCRUOCC PIE activities will help CIRS determine Saturn's helium abundance. The VIMS observation yielded T/mu near the 1 mbar level. The CIRS NADIROCC yielded the temperature at the same latitude (1 deg South) and longitude of the Gamma Crucis stellar occultation point. This allowed us to solve for mu (the mean molecular weight of the atmosphere) and thus the helium abundance. Previous similar attempts had been unsuccessful due to various technical issues, so this was one of the last chances in the mission to get this key measurement.

7 Mar 2017 (DOY 066): VIMS performed four 3x3 mosaics of Saturn's North Pole region for 6 hours with CIRS, ISS and UVIS riding along. Next VIMS tracked the star Gamma Crucis for 4 hours during a back-to-back ingress occultation of the F-D Rings and then Saturn, while CIRS and ISS rode along. These VIMS Rings & Saturn GAMMCRUOCC PIE activities were of highest priority for this orbit. Gamma Crucis is the thirdbrightest VIMS star and with its high inclination to Saturn's ring plane (63 deg) provided our best-quality stellar occultation profiles of dense regions such as the B ring. In the Prime mission we acquired 16 Gamma Crucis occultations, which have provided the key data to estimate the mass of the B ring, by identifying weak density waves, as well as several other significant investigations. This was the only PIE level Gamma Crucis Rings occultation in the F/Prox orbits. With the greatly-extended time baseline, these occultations should permit us to improve our models for the B ring waves, as well as identify new features in the dense rings. The VIMS Saturn GAMCRUOCC PIE is a collaborative activity with CIRS and will help to determine the He/H2 ratio in Saturn's lower stratosphere by obtaining quasi-simultaneous observations of a stellar occultation by VIMS (which yields the scale height, or T/mu) and a limb scan by CIRS NADIROCC PIE (which yields the temperature profile, T(Z)) at the same latitude (1 deg South) and longitude of the ingress Gamma Crucis stellar occultation point. Previous similar attempts have been unsuccessful due to various technical issues, so this is one of the last chances in the mission to get this key measurement.

7 Mar 2017 (DOY 066) continued: CIRS had a 5.5 hour high resolution Saturn illuminated limb integration (LIMBINT) with mid-IR sounding to obtain stratospheric thermal structure with ISS and UVIS as riders. This unique configuration and proximity to Saturn (between 6 and 3 Rs) provided a vertical profile of temperature and hydrocarbon abundances throughout Saturn's stratosphere.

As Cassini passed through periapse and skirts the edge of the F-ring, ISS captured high resolution images of the ring moon Pan for 2.5 hours. **The close encounter with Pan provided images about eight times better than previous best.** The shape and surface morphology of the equatorial bands on the ring-related satellites are important for constraining satellite-ring relations. With other images of Atlas and Daphnis in 2017, knowledge of the similarities and differences of the details of the ring moons were obtained in order-of-magnitude improvements over existing data. **This is a PIE level activity of highest priority for this orbit, warranting a dual playback plan to better guarantee that the high value data is preserved and downlinked.**

Then ISS performed an integration of images along the Saturn bright limb (LIMBINT) studying the composition of the high atmosphere for 1.5 hours with UVIS and VIMS riding. CIRS ended the day with a 6 hour Saturn limb mapping (LIMBMAP) PIE at 10 deg N. latitude. This PIE level science observation was of highest priority for this orbit. CIRS placed their arrays at 100, 400, and 700 km above the 1-bar level on Saturn. This allowed us to derive the vertical profile of temperature from 10 microbars to 10 millibars in Saturn's atmosphere. We will study Saturn's QQO (quasi-quadrennial oscillation) in which the equatorial temperature changes over several Earth years due to vertical motion in the stratosphere.

8 Mar 2017 (DOY 067): Just a few hours after periapse and in view of Saturn's dark south pole, VIMS began a 6.5 hour series of observations with CIRS and UVIS riding along; the first of which was completing 2 Saturn South Pole Mapping mosaics (SPOLMAP). This was followed by a look at Saturn's South Storm Alley (SSTRMLAT), imaging a mosaic of the entire regional band centered at 35 deg S. latitude. As Cassini quickly reached out >9 Saturn radii from the planet, the equator is in better view and VIMS completed its series with mapping mosaics of the South Equatorial region (SEQREGMAP) centered at 5 deg S. latitude.

8 Mar 2017 (DOY 067) continued: Next ISS had a series of Rings and Saturn observations surrounding the Sun's occultation behind Saturn. Leading into the Saturn Solar occultation ingress, ISS observed the faint Rings at high phase angles (HIPHASE) for 1 hour, VIMS rode along. While the Sun was behind Saturn, ISS was able to complete a 30 minute Limb Integration by taking images along Saturn's bright limb studying the composition of the high atmosphere, UVIS and VIMS are riders. UVIS now took the lead with a 2.6 hour observation of the dark Southern Auroral Oval of Saturn (AURSTARE), VIMS and ISS rode. This was a collaborative activity with VIMS, where the first half was a fixed stare pointing to support VIMS and ISS imaging followed by repeated slews across the 55-90 deg S. latitude auroral oval region. ISS then repeated its Saturn LIMBINT and Rings HIPHASE observations as the Sun emerged from behind Saturn.

Finally the day ended with a very important downlink pass using Canberra's 70 meter station in order to return most of the valuable periapse science, as well as the accomplishing the first playback of the high value Pan PIE data.

9 Mar 2017 (DOY 068): CIRS performed an 8 hour sit and stare (COMPSIT) observation studying the composition of the South Saturnian atmosphere as the spacecraft extended father out in its orbit, 15-17 Saturn radii from the planet. This was a collaborative activity with VIMS, who took an image every hour.

Finally the Saturn segment ended with a 2 hour ISS Enceladus Plume PIE observation as part of our plume monitoring campaign. At a distance of about 1 million km from Enceladus, this observation allowed us to observe brightness variations in the entire plume on short timescales, which is excellent for testing theories of the plume production. Additionally, the mean anomaly covered has been observed twice before and the plume varied considerably in brightness between those observations. More data covering this region will help up us characterize these variations, which will lead to better understanding of the long term plume behavior.

The second and final downlink of the segment was also on Canberra's 70 meter station, which was the second playback of the high value Pan PIE data.

Segment Integration Planning

GAP Information (Gaps > 1hr duration)

Saturn 264 Legacy

Gap	Start	End	Duration	Phase angle (range)	Rs range	Sub-S/C Lat.
1	2017- 068T02:20:00	2017- 068T10:35:00	000T08:15:00	164.7 to 159.0	15.05 to 16.95	-15 to -10

Gap Beginning

Gap End

Gap Middle

Beginning of Integration:

DATA VOLUME SUMMARY TRANS	FER FRAME O	VERHEAD INC	LUDED	(80 BI	TS PER	8800-	BIT FRA	ME)									1			
		 			OBS	ERVATI	ON_PERI	OD		 			DOWNLIN	IK_PASS			 			
		 		P4 P5 								-								
DOWNLINK PASS NAME	Start doy hh:mm	 End doy hh:mm	START (Mb)	SCI (Mb)	HK+E (Mb)	TOTAL (Mb)	CPACTY (Mb)	MRGN (Mb)	 OPNAV (Mb)	 SCI (Mb)	ENGR (Mb)	 TOTAL (Mb)	CPACTY (Mb)	MARGN (Mb)	NET_M (Mb)	IARGN (%)	CAROVR (Mb)			
SP_264EA_C70METNON067_PRIME SP_264EA_C70METNON068_PRIME	067 17:55 068 14:43	068 01:50 068 23:43	0 1374	6762 437	192 54	6954 1866	3322	-3631 1456	0 0	461 199	47 53	3830 2118	2456 3310	-1375 1191	1191 1191	21% 36%	1374 0			

Science data allocation > SSR Capacity

DATA VOLUME REPORT --- TRANSFER FRAME OVERHEAD NOT INCLUDED

Event	Start doy hh:mm	End doy hh:mm	CAPS (Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	ENGR (Mb)	TOTAL (Mb)
OBSERVATION_NOR	065 20:35	067 17:55	0.0	101.1	406.8	36.5	1703.1	148.2	163.9	0.0	2181.0	566.3	1394.0	0.0	189.5	6890.4
SP_264EA_C70METNON067_PRIME	067 17:55	068 01:50	0.0	14.9	74.7	2.9	0.0	14.1	24.2	0.0	322.1	4.3	0.0	0.0	0.0	457.2
DAILY TOTAL SCIENCE	065 20:35	068 01:50	0.0	116.0	481.5	39.3	1703.1	162.3	188.1	0.0	2503.1	570.6	1394.0	0.0	189.5	
OBSERVATION_NOR	068 01:50	068 14:43	0.0	24.3	28.8	4.6	200.0	22.9	39.4	0.0	72.7	15.2	25.0	0.0	53.8	486.9
SP 264EA C70METNON068 PRIME	068 14:43	068 23:43	0.0	17.0	86.4	3.2	0.0	16.0	27.5	0.0	42.4	4.9	0.0	0.0	0.0	197.5
DAILY TOTAL SCIENCE	068 01:50	068 23:43	0.0	41.3	115.2	7.9	200.0	38.9	67.0	0.0	115.2	20.2	25.0	0.0	53.8	

Standard Waypoints*

OBS_NAME	START	END	POS_X_2_NSP	POS_X_2_NEP	NEG_X_2_NSP	NEG_X_2_NEP	POS_Z_2_NSP	POS_Z_2_NEP	NEG_Z_2_NSP	NEG_Z_2_NEP	NEG_X_2_SUN	NEG_Z_2_EARTH
SP_264NA_OBSERV065_NA	2017-065T20:35:00	2017-067T17:55:00	**BAD**									
SP_264NA_OBSERV068_NA	2017-068T01:50:00	2017-068T14:43:00	**BAD**									

RBOT Friendly Waypoints

OBSERVATION PERIOD	START	END	POS_X	NEG_X	POS_Z	NEG_Z
SP_264NA_OBSERV065_NA	2017-065T20:35:00	2017-067T17:55:00				
SP_264NA_OBSERV068_NA	2017-068T01:50:00	2017-068T14:43:00				

*Note: Waypoints issues above are due to Sun violations, which end at 2017-068T01:53 NEG_X to NSP secondary waypoint is good after 2017-068T01:53

Good Downlinks

DOWNLINK	START	END	POS_X_2_NSP	POS_X_2_NEP	NEG_X_2_NSP	NEG_X_2_NEP	POS_Y_2_NSP	POS_Y_2_NEP	NEG_Y_2_NSP	NEG_Y_2_NEP	ROLL_FLAG
SP_264EA_C70METNON067_PRIME	2017-067T17:55:00	2017-068T01:50:00	ОК	ОК	ОК	ОК	**BAD**	**BAD**	ОК	ОК	ОК
SP_264EA_C70METNON068_PRIME	2017-068T14:43:00	2017-068T23:43:00	ОК	ОК	ОК	ОК	**BAD**	**BAD**	ОК	ОК	ОК

• NEG_Y to Saturn not safe: ~2017-067T05:32:41 to 068T01:56:19 (ORS to Sun < 15 deg.)

- ORS to SUN < 12 deg: ~2017-067T06:38:07 to 067T22:22:36
- Minimum ORS to SUN angle is ~2.5 deg

Waypoint 1 (2017-065T21:19:00 – 2017-067T09:40:00): No acceptable valid waypoint, custom period used.

Waypoint 2 (2017-067T09:40:00 - 2017-067T16:09:00): UVIS_SOL_OFF to Sun, POS_Z to NSP

Waypoint 3 (2017-068T02:20:00 - 2017-068T11:05:00): CIRS_FP1 to Saturn, POS_Z to NSP

Waypoint 4 (2017-068T11:05:00 – 2017-069T00:10:00): Downlink attitude (XBAND to Earth, NEG_X to 275.0/67.0) was established before ISS Enceladus Plume Observation due to the activity's placement against downlink during POST planning

Notes (1/2)

- Pointing:
 - Waypoints:
 - RBOT friendly waypoints used when compatible with science
 - No Valid Waypoint for Periapse Period (2017-065T21:19 067T09:40 SCET, Duration 001T12:21): Use Custom Period
 - Custom Period (2017-066T11:14 067T09:40 SCET) Used to minimize turn times among instruments and avoid Waypoint issues
 - Collaborative PRIME/RIDER activities:
 - UVIS_264SA_AURDSTARE001_PRIME: Collaborative w/ VIMS Rider
 - VIMS_264SA_GAMCRUOCC001_PIE: Collaborative w/ CIRS Rider
 - ISS_264PN_PAN001_PIE: Collaborative w/ CIRS Rider
 - UVIS_264SA_AURSTARE001_PRIME: Collaborative w/ VIMS Rider
 - CIRS_264SA_COMPSIT002_PRIME: Collaborative w/ VIMS Rider
 - YGAP068 placed with ISS EN_PLUME PIE between YGAP068 and C70METNON068 downlink, due to firm ISS EN_PLUME PIE placement
 - Checked and approved by SCO per email Laura Burke (08/08) and NAV per email Julie Bellerose (08/08)
 - CIRS and VIMS temperature/boresite violations:
 - CIRS Max Temp = 77.00K (ΔT = 2.40K) at 2017-068T00:42 SCET (During SP C70METNON067 Rolling Downlink)
 - CIRS provided approval via email (Paul Romani 7/20)
 - Operational FR Wavier will be required (See SPLAT item)
 - VIMS Max Temp = $62.25K (\Delta T = 2.59K)$ at 2017-066T20:52 SCET (During CIRS LIMBMAP001 PIE)
 - VIMS provided approval via email (Bob Brown 7/11)
 - Consumable FR waiver will be required (See SPLAT item)
 - CIRS Boresite to Sun < 15° during DOY 067–068 (During VIMS SPOLMAP001, SSTRMLAT001, SEQREGMAP001; ISS HIPHASEFB(001 & 002), LIMBINT(002 & 003); UVIS AURSTARE001; SP WAYPTTURN068)
 - CIRS Boresite to Sun angle $< 12^{\circ}$ occur only during Solar Occultation behind Saturn
 - CIRS provided approval via email (Paul Romani 7/20)
 - Operational FR Wavier will be required (See SPLAT item)
 - CMT Management required during the period 2017-067T09:45:15 15:13:29 SCET for the following violations (see SPLAT item):
 - NEG_Y to SUN angle $< 12^{\circ}$ (Min NEG_Y to Sun angle = 0.543° at 2017-067T09:49:10)
 - CMT Management required during the following activities:
 - ISS HIPHASEFB001 (violation at 067T09:46:00 -10:34:15)
 - ISS LIMBINT002 (violation at 067T10:43:00-11:06:10)
 - UVIS AURSTARE001 (violation at 067T11:12:55-13:45:55)
 - ISS LIMBINT003 (violation at 067T13:53:55-14:17:25)
 - ISS HIPHASEFB002 (violation at 067T14:24:00-15:13:00)
 - Sun occulted behind Saturn between 2017-067T09:38:15 15:20:29 (from Tour Atlas)

Notes (2/2)

- Pointing (continued):
 - Periapse Jumpstart of Merged PDT & AACS analysis for teams early PDT deliveries during 2017-065T20:35 068T01:50 (see SPLAT item)
- Data Volume:
 - **Dual Playback:** ٠
 - Hi-value data (066T16:35:00 18:51:30): ISS PAN PIE & RPX
 - Dual Playback/Hi-value data volume: 472.76Mb
 - SMT Warnings: ٠
 - SP_264EA_C70METNON067_PRIME Priority List conflicts with selected SSR. (SSRAP4,SSRBP4): OKAY b/c Dual Playback (1st playback) •
 - SP 264EA C70METNON068 PRIME Priority List conflicts with selected SSR. (SSRAP4, SSRBP4): OKAY b/c Dual Playback (2nd playback)
 - Segment Carryover:
 - 418Mb Carryover into XD 264/265 segment: XD accepts carryover per email (Kelly Perry 7/15)
- DSN:
 - No Level 3 requests identified .
 - Juno Conflict with C70METNON067 (conflicting period 2017-067T10:26-19:41): Juno to accommodate Cassini per Juno_Passes_RevK.xlsx ٠
 - ap_downlink report check warnings dispositions (except %70M stations, ignore):
 - SP 264EA C70METNON067 PRIME has an unusual priority playback list: OKAY b/c Dual Playback (1st playback)
 - SP_264EA_C70METNON068_PRIME has an unusual priority playback list: OKAY b/c Dual Playback (2nd playback) ٠
- Resource checker dispositions:
 - ٠ C70METNON067: First Part value of SSRAP4 does not match default...: OKAY b/c Dual Playback
 - C70METNON068: First Part value of SSRAP4 does not match default... : OKAY b/c Dual Playback
- Opmodes:
 - No unusual opmodes
- Hydrazine:
 - N/A
- Special Activities:
 - PIES:

•

- CIRS 264SA NADIROCC001 PIE (2017-065T23:04:00-066T01:04:00)
- VIMS_264RI_GAMCRUOCC001_PIE (2017-066T07:12:00-066T09:50:00)
- VIMS 264SA GAMCRUOCC001 PIE (2017-066T09:50:00 066T11:14:00) ٠
- ISS 264PN PAN001 PIE
 - (2017-066T16:35:00 066T19:05:00) CIRS 264SA LIMBMAP001 PIE (2017-066T20:31:00 - 067T02:31:00)
- ISS 264EN PLUME001 PIE (2017-068T12:35:00 - 068T14:43:00)

21

Liens (1/2)

Sequence Liens (should all be SPLAT items):

- Dual Playback:
 - "During DSN negotiations ensure that SSR-A is emptied before the pointers are reset. This item cannot be closed until the DSN negotiations are complete for both downlink passes, or the dual playback is deleted."
- CMT Management waiver required for the period 2017-067T09:45:15 15:13:29 SCET due to the following CMT violations:
 - NEG_Y to Sun < 12 deg violation during the following activities:
 - ISS_264RI_HIPHASEFB001_PRIME (violation at 067T09:46:00 -10:34:15)
 - ISS_264SA_LIMBINT002_PRIME (violation at 067T10:43:00-11:06:10)
 - UVIS_264SA_AURSTARE001_PRIME (violation at 067T11:12:55-13:45:55)
 - ISS_264SA_LIMBINT003_PRIME (violation at 067T13:53:55-14:17:25)
 - ISS_264RI_HIPHASEFB002_PRIME (violation at 067T14:24:00-15:13:00)
 - Min NEG_Y to Sun angle = 0.543 deg at 2017-067T09:49:10
 - Sun is occulted behind Saturn between 2017-067T09:38:15 15:20:29 (from Tour Atlas)
- CIRS Boresite to Sun < 15 deg Operational FR waiver required for DOY 067–068 (During VIMS SPOLMAP001, SSTRMLAT001, SEQREGMAP001; ISS HIPHASEFB(001 & 002), LIMBINT(002 & 003); UVIS AURSTARE001; SP WAYPTTURN068)
 - CIRS Boresite to Sun angle < 12 deg occur only during Solar Occultation behind Saturn
 - Sun is occulted behind Saturn between 2017-067T09:38:15 15:20:29 (from Tour Atlas)
- CIRS heating violation Operational FR waiver required during SP_264EA_C70METNON067_PRIME Rolling Downlink
 - CIRS Max Temp = 77.00K (dT = 2.40K) at 2017-068T00:42 SCET
- VIMS heating violation Consumable FR waiver required during CIRS_264SA_LIMBMAP001_PIE
 - VIMS Max Temp = 62.25K (dT = 2.59K) at 2017-066T20:52 SCET
- VIMS_264RI_GAMCRUOCC001_PIE to include 20 min period starting roughly at 2017-066T07:14 to include a Bias prior to the stellar occultation starting time of 2017-066T07:45:25.48 from Tour Atlas, per AACS Periapse Jumpstart Analysis. Coordinate with VIMS Rep.

Liens (2/2)

Saturn 264 Legacy

Sequence Liens (should all be SPLAT items):

• The following science requests from 2017-065T20:35 – 068T01:50 in Saturn_264 have been designed in PDT during integration. Teams identified shall deliver these designs as part of the Port 1 delivery; SIP Leads to monitor.

UVIS 264SA AURDSTARE001 PRIME CIRS 264SA NADIROCC001 PIE VIMS 264SA NPOLMAP001 PRIME VIMS 264RI GAMCRUOCC001 PIE VIMS 264SA GAMCRUOCC001 PIE CIRS 264SA LIMBINT001 PRIME ISS 264PN PAN001 PIE ISS 264SA LIMBINT001 PRIME CIRS 264SA LIMBMAP001 PIE VIMS 264SA SPOLMAP001 PRIME VIMS 264SA SSTRMLAT001 PRIME VIMS 264SA SEQREGMAP001 PRIME ISS 264RI HIPHASEFB001 PRIME ISS 264SA LIMBINT002 PRIME UVIS 264SA AURSTARE001 PRIME ISS 264SA LIMBINT003 PRIME ISS 264RI HIPHASEFB002 PRIME

Dual Playback

Saturn **BEGHIVAL FNDHIVAI** P4 Dual SSR-A PPL set to **SSRs** SSR empty 264 Playback before hi-val empty A4,B4 for empty after first first AND Data observation after Volume period? playback? second second playbacks? playback? (if not verify any (if not does carryover on A anv Hi-Val fits with Hi-Val data carry data) over?) PAN & 066T16:35:00 066T18:51:30 472.76 Mb Yes Yes Yes No. but no Hi-Val data RPX carryover.

Playbacks NOT contiguous:

Note: Both playbacks on the same DSN station is as intended, due to incorporating dual playback late in integration

Reminder - ALL instruments' data is played back twice during P4 dual playback periods

Martin Brennan Science Planning - Sequence Team

Saturn 264 Legacy

-Y to Sun violation (SATURN 264)

Saturn 264 Legacy

- -Y to Sun CMT Management and flight rule waivers will be needed for the ISS Rings HIPHASE(001 & 003), ISS Saturn LIMB INT(002 & 003), and UVIS Auroral Stare on DOY 067 during the Saturn Solar occultation
 - Time of Saturn Solar Occultation is from the tour atlas.
 - Timing uncertainty is <u>+</u> 7 minutes as determined using Brad Wallis' "ask_carnac.pro"

- AACS Evaluation of Saturn 264 Jumpstart by David Bates (5/17)
- Nominal plan needs a lot of work
 - Need to insert a large tweak in the middle of two observations
 - 2017-066T13:01 CIRS_264SA_LIMBINT001
 - 2017-066T22:36 CIRS_264SA_LIMBMAP001_PIE
 - And four more tweaks
 - 2017-066T07:12 VIMS_264RI_GAMCRUOCC001
 - 2017-066T10:48 VIMS_264SA_GAMCRUOCC001
 - 2017-066T16:35 ISS_264PN_PAN001
 - 2017-067T15:09 ISS_264RI_HIPHASEFB002
- Tweaks can be greatly reduced if we insert RWA bias during VIMS_264RI_GAMCRUOCC001_PIE at about 2017-066T09:40, along with a small tweak to: VIMS_264SA_GAMCRUOCC001_PIE at 2017-066T10:25
 - Bias during the Ring Occultation is not ideal, but may be possible provided that it can placed towards the beginning of the observation prior to acquiring the star and will require iteration with VIMS Rep.
 - The secondary of the Saturn Occultation is very sensitive. However, the 5 deg offset suggested is acceptable to CIRS, but needs to be about VIMS_IR for VIMS.
- Also need bias placed right before last downlink roll, SP_264EA_C70METNON067 at 2017-067T17:50.
 - Looks like there is enough time for this