

Science Planning & Sequence Team

SATURN TARGET WORKING TEAM

Rev 278_279 Segment Legacy Package

Segment Boundary: June 10, 2017 – June 16, 2017 2017-161T00:55:00 – 167T12:18:00 (SCET)

Integration Began 08/15/2016 Segment Delivered to S100 Sequence 12/07/2016 Lead Integrator was Keven Uchida

Legacy Package Assembled by Keven Uchida

Table of Contents

•	Seg	ment Overview and Final Products	3 - 15
	_	Summary	4
	_	Final Sequenced SPASS (Science Planning Attitude Strategy Spreadsheet)	5
	_	Final Sequenced SMT (SSR Management Tool) Reports	6 - 7
	_	Segment Geometry	8 - 10
		Overview	8 - 9
		Solar Geometry ORS Boresight Concerns	10
	_	Periapse Quicklooks	11
	_	Daily Science Highlights	12 - 15
•	Seg	ment Integration Planning	16 - 30
	_	Timeline Gaps & Suggested Observations	17 - 18
	_	Initial SMT (SSR Management Tool) Reports	19 - 21
	_	Waypoint Selection	22 - 23
		Options Considered	22
		Waypoints Chosen	23 - 24
	-	Sequence handoff notes	25 - 28
	_	Liens on sequence development/execution	29
	_	RBOT summary	30

* N.A. = Slide present but content not available.

Keven Uchida

Segment Overview and Final Products

- This was a 6 day long Proximal segment, spanning across both periapse and apoapse.
- This segment began with a "jumpstart" period (see last bullet), containing Radio Science (RSS) gravity and ring occultation measurements/observations (see page 11, "Periapse Quicklooks" and the following "Daily Science Highlights" pages). CDA rides along, performing the first of only two observations of its kind, to measure <u>small</u> particles in the main ring.
- Outside of the jumpstart period, the Segment was pre-populated with a high priority (PIE) ISS observation of Enceladus' Plume (DOY 162).
- The remainder of the segment was integrated with VIMS mapping observations. Three UVIS EUV/FUV activities
 were placed in this segment. They were coordinated in time/spacing to provide observations over as broad a range
 of phase angles as possible (between 154 to 139 degrees), and within a short time period, to enhance the science
 return.
- The Sun passed within 8.1 degrees of Saturn center at 161T23:30 (See page 10; "Solar Geometry ORS Boresight Concerns"). The only activity impacted by the close approach was the VIMS Southern Hemisphere Map (162T02:38:00 to 162T07:00:00) – mapping had to be directed/limited to Saturn's southernmost limb, opposite the Sun, in order to avoid violating the ORS-boresight to Sun minimum angle flight rule.
- As noted earlier, this segment contained a "jumpstart" period. Due to the challenging geometry and unique science of this phase of the mission, the timeline for the days around periapse was decided in advance of full segment integration. Detailed pointing analysis, constraint checking, and reaction-wheel bias optimization (RBOT) was performed on the periapse period. No changes were required following this analysis, due to relaxed constraints

Final Sequenced SPASS (1 of 1)

Saturn 278_279 Legacy

Ļ										
a		Request	Riders	Start (SCET)	Start (Epoch)	Duration	End	Primary	Secondary	Comments
ŝ		Sequence S100, length = 46		2017-145T08:57:00		045T16:17:00	2017-191T01:14:00			
ĝ.		SATURN_278_279 Segment		2017-161T00:55:00		006T11:23:00	2017-167T12:18:00			
Ξ		SP_278EA_G34BWGRSS161_PRIME	C, M, R	2017-161T03:00:00		000T08:00:00	2017-161T11:00:00	XBAND to Earth	POS_X to 299.7/63.6	Collaborative Rider(s): CDA
2		SP_278EA_C70METRSS161_PRIME	M, R	2017-161T11:00:00		000T01:01:00	2017-161T12:01:00	XBAND to Earth	POS_X to 299.7/63.6	Collaborative Rider(s): CDA
-		RSS_278RI_PERIOCC001_PRIME	M, R	2017-161T12:01:00		000T02:07:00	2017-161T14:08:00	XBAND to Earth	POS_X to 299.7/63.6	Collaborative Rider(s): CDA
	1	Periapse R = 1.055 Rs, lat		2017-161T12:53:15		000T00:00:01	2017-161T12:53:16			
		SP_278EA_C70METRSS461_PRIME	C, M, R	2017-161T14:08:00		000T02:24:00	2017-161T16:32:00	XBAND to Earth	POS_X to 299.7/63.6	Collaborative Rider(s): CDA
5		RSS_278RI_CRDOCC001_PRIME	M, R	2017-161T16:32:00		000T10:06:00	2017-162T02:38:00	XBAND to Earth	POS_X to 299.7/63.6	Collaborative Rider(s): CDA
Ŷ	Ч	VIMS_278SA_SHEMMAP001_PRIME	C, U	2017-162T02:38:00		000T04:22:00	2017-162T07:00:00	ISS_NAC to Saturn_South_Pole	NEG_Z to NSP	
·		ENGR_278SC_SSACHK162_AACS								
_		SP_278EA_C70METNON462_PRIME	С	2017-162T08:30:00		00:00:00:00	2017-162T17:30:00	XBAND to Earth	Rolling	
<u> </u>		SP_278SA_WAYPTTURN162_PRIME		2017-162T17:30:00		000T00:40:00	2017-162T18:10:00	ISS_NAC to Saturn	NEG_X to NSP	
g		NEW WAYPOINT		2017-162T18:10:00		001T12:35:00	2017-164T06:45:00	ISS_NAC to Saturn	NEG_X to NSP	
σŀ	-0	VIMS_278SA_SHEMMAP002_PRIME		2017-162T18:10:00		000T04:20:00	2017-162T22:30:00	ISS_NAC to Saturn	NEG_X to NSP	
		ISS_278EN_PLUME001_PIE	C, U, V	2017-162T22:30:00		000T12:40:00	2017-163T11:10:00	ISS_NAC to Enceladus	NEG_X to NSP	SOST PIE
	1	VIMS_278SA_GLOBMAP001_PRIME		2017-163T11:10:00	-	000T03:00:00	2017-163T14:10:00	ISS_NAC to Saturn	NEG_X to NSP	
≓	L	UVIS_278SA_EUVFUV001_PRIME	C, I	2017-163T14:10:00	9	000T15:55:00	2017-164T06:05:00	UVIS_FUV to Saturn	NEG_X to Sun	
ap		SP_278EA_DLTURN164_PRIME		2017-164T06:05:00		000T00:40:00	2017-164T06:45:00	XBAND to Earth	NEG_X to NEP	
5		NEW WAYPOINT		2017-164T06:45:00		000T11:10:00	2017-164T17:55:00	XBAND to Earth	NEG_X to NEP	
		SP_278EA_YGAP164_PRIME		2017-164T06:45:00		000T01:30:00	2017-164T08:15:00	XBAND to Earth	NEG_X to NEP	
		SP_278EA_C70METNON164_PRIME	С	2017-164T08:15:00		000T09:00:00	2017-164T17:15:00	XBAND to Earth	Rolling	
		SP_278SA_WAYPTTURN164_PRIME		2017-164T17:15:00		000T00:40:00	2017-164T17:55:00	ISS_NAC to Saturn	NEG_X to Sun	
à	~	NEW WAYPOINT	Training and the	2017-164T17:55:00		000T07:05:00	2017-165T01:00:00	ISS_NAC to Saturn	NEG_X to Sun	
E l	5	UVIS_278SA_EUVFUV002_PRIME	C, I, V	2017-164T17:55:00		000T06:25:00	2017-165T00:20:00	UVIS_FUV to Saturn	NEG_X to Sun	
Ŭ		Apoapse Per = 6.5 d, inc =		2017-164T18:24:23		000T00:00:01	2017-164T18:24:24			
		SP_279EA_DLTURN165_PRIME		2017-165100:20:00		000100:40:00	2017-165101:00:00	XBAND to Earth	NEG_X to NEP	
				2017-165101:00:00		000110:25:00	2017-165111:25:00	XBAND to Earth	NEG_X to NEP	
		SP_279EA_YGAP165_PRIME	~	2017-165101:00:00		000101:30:00	2017-165102:30:00	XBAND to Earth	NEG_X TO NEP	
		SP_279EA_G34BWGNUN165_PRIME	C	2017-165102:30:00		000108:15:00	2017-105110:45:00	XBAND to Earth	Rolling	
~		SP_279SA_WAYPTTURN165_PRIME		2017-165110:45:00		000100:40:00	2017-165111:25:00	ISS_NAC to Saturn	NEG_X to Sun	
Ğ.	_		C I V	2017-165111:25:00	P.	000119:25:00	2017-166106:50:00	ISS_NAC to Saturn	NEG_X to Sun	
- Eg	4		C, I, V	2017-165111.25:00		000718.45:00	2017-166106:10:00	VIS_FOV to Saturn	NEC_X to Sun	
<u> </u>				2017-166106:10:00		000100:40:00	2017-166706:50:00	XBAND to Earth (0.0.0.0,-9.5 deg. offset)	NEG_Y to Saturn	
		SD 279EA VCAD165 DRIME		2017-100100.50:00		000T01-20-00	2017-100118:00:00	XBAND to Earth (0.0,0.0,-5.5 deg. offset)	NEG V to Saturn	
		SP 279EA_C24RW/GNON166_DRIME	CE	2017-100100.30.00		000101.30.00	2017-100108.20.00	XBAND to Earth (0.0,0.0,-9.5 deg. offset)	NEG_V to Saturn	MIMI NEG V to SA (0.0 -9.5)
		SP 2795A WAYDTTURNI66 DRIME	Cy L	2017-166T17:20:00		000T00:40:00	2017-166T18:00:00	ISS NAC to Saturn	NEG X to NSP	MIMI. NEG_1 to 3A (0,0,-3.3).
				2017-166T18:00:00		000T06:45:00	2017-167100:45:00	ISS_NAC to Saturn	NEG_X to NSP	
4	Γ	VIMS 2795A NHEMMAPOO1 PRIME	C	2017-166T18:00:00	0	000T04:35:00	2017-166T22:35:00	ISS_NAC to Saturn	NEG X to NSP	
Ĕ.	1	ISS 279TL M150B3H7166 PRIME	C V	2017-166T22:35:00		000T01:30:00	2017-167T00:05:00	ISS_NAC to Titan	NEG_X to NSP	
~		SP 279EA DLTURN167 PRIME		2017-167T00:05:00		000T00:40:00	2017-167T00:45:00	XBAND to Earth	NEG Y to 22,34/-50.0	
		NEW WAYPOINT		2017-167T00:45:00		001T04:45:00	2017-168T05:30:00	XBAND to Earth	NEG Y to 22.34/-50.0	
		SP 279EA YGAP167 PRIME		2017-167T00:45:00		000T01:30:00	2017-167T02:15:00	XBAND to Earth	NEG Y to 22,34/-50.0	
		SP 279EA G34B26NON167 PRIME	С	2017-167T02:15:00		000T04:20:00	2017-167T06:35:00	XBAND to Earth	Rolling	Match following MAPS 279 custom period pickup attitude
		SP 279EA C70METNON167 PRIME	C.E	2017-167T06:35:00		000T05:25:00	2017-167T12:00:00	XBAND to Earth	5 Hr Rolling	Match following MAPS 279 custom period pickup attitude
	1		A CONTRACTOR OF		1					

DATA VOLUME SUMMARY --- TRANSFER FRAME OVERHEAD INCLUDED (80 BITS PER 8800-BIT FRAME)

		1			OBS	ERVATI	ON_PERI	OD		[l			DOWNLIN	K_PASS			
		1				P4			P5	 RECC	RDED	 		PLAYB	ACK		
DOWNLINK PASS NAME	Start doy hh:mm	 End doy hh:mm	START (Mb)	SCI (Mb)	HK+E (Mb)	TOTAL (Mb)	CPACTY (Mb)	MRGN (Mb)	 OPNAV (Mb)	 SCI (Mb)	ENGR (Mb)	 TOTAL (Mb)	CPACTY (Mb)	MARGN (Mb)	NET_M (Mb)	ARGN (%)	CAROVR (Mb)
SP 278EA G34BWGRSS161 PRIME	161 03:00	161 11:00	1372	0	0	1372	3322	1951	0	705	47	2124	577	-1547	142	1%	1547
SP 278EA C70METRSS161 PRIME	161 11:00	161 12:01	1547	0	0	1547	3322	1776	0	231	6	1783	439	-1345	142	18	1345
SP 278EA C70METRSS461 PRIME	161 14:08	161 16:32	1345	548	9	1901	3322	1421	0	290	14	2206	1016	-1190	142	18	1189
SP_278EA_C70METNON462_PRIME	162 08:30	162 17:30	1189	1604	67	2861	3322	461	0	786	53	3700	3834	134	142	1%	0
SP_278EA_C70METNON164_PRIME	164 08:15	164 17:15	0	3151	164	3315	3322	7	0	199	53	3567	3882	314	795	5%	0
SP_279EA_G34BWGNON165_PRIME	165 02:30	165 10:45	0	526	39	565	3322	2757	0	182	49	796	584	-212	480	48	212
SP_279EA_C34BWGNON166_PRIME	166 08:20	166 17:20	212	1392	91	1695	3322	1627	0	199	53	1947	918	-1030	480	48	1030
SP_279EA_G34B26NON167_PRIME	167 02:15	167 06:35	1030	636	38	1703	3322	1619	0	248	26	1977	352	-1625	480	48	1625
SP_279EA_C70METNON167_PRIME	167 06:35	167 12:00	1625	0	0	1625	3322	1697	0	310	32	1966	2122	155	480	48	0

Saturn 278_279 Legacy

DATA VOLUME REPORT --- TRANSFER FRAME OVERHEAD NOT INCLUDED

Event	Start doy hh:mm	End doy	hh:mm	CAPS (Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	ENGR (Mb)	TOTAL (Mb)
OBSEDUATION NOD	159 06.46		16.05	0.0	62 8	378 7	13 7	1100 0	59.3	101 9	0.0	391 7	1 4	119 0	0 0	139.2	2367 8
SP 278FA C70METNON160 PRIME	160 16:05	160	19.30	0.0	6.4	36.9	1.4	0.0	6.1	10.5	0.0	126 7	1.9	0.0	0.0	0.0	189.8
SP 278EA M34BWGBSS160 PRIME	160 19:30	161	03:00	0.0	18.1	11.7	3.0	0.0	13.3	23.1	0.0	353.1	4.1	0.0	0.0	0.0	426.4
SP 278EA G34BWGRSS161 PRIME	161 03:00	161	11:00	0.0	30.2	10.8	2.9	0.0	31.1	34.6	0.0	584.7	4.4	0.0	0.0	0.0	698.6
SP 278EA C70METRSS161 PRIME	161 11:00	161	12:01	0.0	12.5	0.0	1.1	0.0	7.2	4.7	0.0	202.6	0.6	0.0	0.0	0.0	228.7
DAILY TOTAL SCIENCE	159 06:46	161	12:01	0.0	130.1	438.1	22.0	1100.0	117.0	174.7	0.0	1658.7	12.4	119.0	0.0	139.2	
OBSERVATION NOR	161 12:01	161	14:08	0.0	31.9	0.0	10.2	0.0	15.1	13.2	0.0	472.4	0.0	0.0	0.0	8.8	551.6
SP 278EA C70METRSS461 PRIME	161 14:08	161	16:32	0.0	12.3	15.1	0.9	0.0	17.1	10.4	0.0	230.7	1.3	0.0	0.0	0.0	287.7
DAILY TOTAL SCIENCE	161 12:01	161	16:32	0.0	44.2	15.1	11.0	0.0	32.1	23.6	0.0	703.2	1.3	0.0	0.0	8.8	
OBSERVATION NOR	161 16:32	162	08:30	0.0	45.9	62.9	5.7	0.0	35.3	56.9	0.0	1166.9	15.8	200.0	0.0	66.7	1656.2
SP 278EA C70METNON462 PRIME	162 08:30	162	17:30	0.0	17.0	86.4	3.2	0.0	16.0	27.5	0.0	623.5	4.9	0.0	0.0	0.0	778.7
DAILY TOTAL SCIENCE	161 16:32	162	17:30	0.0	62.9	149.3	9.0	0.0	51.3	84.4	0.0	1790.4	20.8	200.0	0.0	66.7	
OBSERVATION NOR	162 17:30	164	08:15	0.0	73.1	411.6	14.0	1250.0	68.9	118.6	0.0	182.7	483.4	520.0	0.0	162.0	3284.2
SP_278EA_C70METNON164_PRIME	164 08:15	164	17:15	0.0	17.0	86.4	3.2	0.0	16.0	27.5	0.0	42.4	4.9	0.0	0.0	0.0	197.5
DAILY TOTAL SCIENCE	162 17:30	164	17:15	0.0	90.1	498.0	17.2	1250.0	84.9	146.1	0.0	225.2	488.3	520.0	0.0	162.0	
OBSERVATION_NOR	164 17:15	165	02:30	0.0	17.4	46.2	3.3	50.0	16.5	28.3	0.0	43.6	116.2	200.0	0.0	38.7	560.2
SP_279EA_G34BWGNON165_PRIME	165 02:30	165	10:45	0.0	15.6	78.3	3.0	0.0	14.7	25.2	0.0	38.9	4.5	0.0	0.0	0.0	180.2
DAILY TOTAL SCIENCE	164 17:15	165	10:45	0.0	33.0	124.5	6.3	50.0	31.1	53.6	0.0	82.5	120.8	200.0	0.0	38.7	
OBSERVATION NOR	165 10:45	166	08:20	0.0	40.7	135.0	7.8	50.0	38.4	66.0	0.0	101.8	339.7	600.0	0.0	90.2	1469.6
SP 279EA C34BWGNON166 PRIME	166 08:20	166	17:20	0.0	17.0	86.4	3.2	0.0	16.0	27.5	0.0	42.4	4.9	0.0	0.0	0.0	197.5
DAILY TOTAL SCIENCE	165 10:45	166	17:20	0.0	57.7	221.4	11.0	50.0	54.4	93.6	0.0	144.2	344.6	600.0	0.0	90.2	
OBSERVATION_NOR	166 17:20	167	02:15	0.0	16.8	54.6	3.2	38.5	15.9	27.3	0.0	269.8	0.0	204.0	0.0	37.3	667.4
SP_279EA_G34B26NON167_PRIME	167 02:15	167	06:35	0.0	8.2	36.0	1.6	0.0	7.7	13.3	0.0	176.3	2.4	0.0	0.0	0.0	245.4
SP_279EA_C70METNON167_PRIME	167 06:35	167	12:00	0.0	10.2	45.0	2.0	0.0	9.6	16.6	0.0	220.4	3.0	0.0	0.0	0.0	306.7
DAILY TOTAL SCIENCE	166 17:20	167	12:00	0.0	35.2	135.6	6.7	38.5	33.2	57.1	0.0	666.5	5.4	204.0	0.0	37.3	

7

Segment Geometry (1 of 2)

Saturn 278_279 Legacy

Segment START: 2017-161T00:55

	Saturn Range	Phase Angle	Sub-S/C Lat.
Segment Start	9.12	161.3	+32
Periapse	1.06	31.5	-4
Apoapse	21.16	146.5	+6
Segment End	13.76	127.7	+23

Continued on next page

Keven Uchida

Segment Geometry (2 of 2)

Saturn 278_279 Legacy

Solar Geometry – ORS Boresight Concerns

Periapse Quicklooks

Rev 278_279

SP_278EA_M34BWGRSS161_PRIME
SP 278EA G34BWGRSS161 PRIME
SP 278EA C70METRSS161 PRIME
RSS 278RI PERIOCC001 PRIME
Perianse R = 1.055 Rs. lat
SD 278EA C70METDSS461 DDIME
K22_278KI_CKDUCCUU1_PKIME
VIMS_278SA_SHEMMAP001_PRIME

The Saturn 278_279 segment started ~12 hr before periapsis, with the fourth of six RSS/GRAV Occultation experiments to be performed during the proximal orbits. These observations provided the best opportunity to measure Saturn's gravity as the spacecraft plunged into the deepest recesses of the planet's gravity field. It details deviations of gravity from spherical symmetry, which reveals the *depth* of the strong winds seen at the surface and how density varies with depth. Cassini also feels the gravitational pull from the rings (the B-ring in particular), allowing the ring mass (and implied age) to be determined very accurately.

As periapsis approached, RSS performed the fourth of its near-periapse occultation measurements, observing the rings from a distance < ~1 Rs, starting almost immediately after the S/C crosses the ring plane (PERIOCC001, CRDOCC001). High resolution measurements were obtained. The large opening angle of the rings allowed for maximum possible penetration of the radio signals of optically thick features of the B Ring and its 4 regions of distinct morphology, where most of the ring mass resides.

CDA rode with RSS, performing the first of only two observations where CDA concentrates on SMALL (main ring) particle detection. The small particle detection mode was unique for characterizing the degree of the pollution and age of the rings.

Following the RSS Grav/OCC observations, VIMS obtained one of the highest resolution southern hemisphere maps (SHEMMAP001) obtained during the mission (pixels spanning just over 300 km). VIMS is looking for changes in winds, cloud structures, and perhaps changes in phosphine content as the rate of upwelling changes with season due principally to potential changes in upper atmosphere temperature.

10 Jun 2017 (DOY 161)

The Saturn 278_279 segment started a very busy science day, kicking off the **fourth** of the RSS/GRAV Occultation experiments during Cassini proximal orbits. These observations provide the best opportunity to measure Saturn's gravity field by tracking very precisely the orbit of Cassini relative to the Earth, as the spacecraft plunges at about 30 km/s into the deepest recesses of the planet's gravity field, just skimming the atmosphere. Deviations of gravity from spherical symmetry were sought, which reveal the *depth* of the strong winds seen at the surface, and how density varies with depth. Cassini must, however, be very close to Saturn to feel the acceleration caused by the weakest of these gravity perturbations, and this is why the final orbits were so valuable and unique to our understanding of the interior of Saturn - the orbital geometry and the proximity to the planet will allow Cassini to measure surface gravity accelerations as small as 10 million times less than that on Earth. Additionally, while passing close to the planet, Cassini feels the gravitational pull from the rings (the B-ring in particular), and thereby allows the mass to be determined very accurately. The ring mass in turn, gives an indication of the age of the ring system.

Also, at the start of the segment (outside of periapsis) MAG continued its magnetospheric survey measurements in conjunction with the other MAPS instruments: RPWS conducted its auroral campaign to observe the auroral magnetosphere (e.g. the acceleration region) and SKR source regions. INMS examined atmospheric and ionospheric thermal structure. CDA performed regular dust surveys.

Throughout the Proximal orbits, in particular during periapses passes, MAG collected unique measurements which lead to a better understanding of the departure from axisymmetry for the planetary magnetic field, the resolution of the planetary rotation period, the depth to dynamo region, the size of the central core, and the strength of field inside the planet (energy budget). In addition, measurements of field aligned currents lead to a better understanding of auroral processes (in conjunction with other instruments). Each and every periapsis pass provided MAG observations of Saturn's internal magnetic field over a unique orbit track in latitude and longitude space.

RPWS observed neutral molecules in the inner magnetosphere and then, at ring plane crossing (161T12:35), measured/determined the equatorial dust flux and scale height as a function of radial distance and obtains high resolution of plasma waves at the magnetic equator

(Continued on Next Page)

10 Jun 2017 (DOY 161) (CONTINUED)

As periapse approached, RSS performed the fourth of eight near-peripase occultation measurements, observing the rings from a distance < 1 RS, starting almost immediately after the S/C crosses the ring plane, obtaining high resolution measurements. Also unique about this campaign is that the rings were close to their maximum opening angle (B \sim 26-27°) as seen from the Earth, possible only close to the 2017 epoch of the Proximal orbits. The large B-angle allowed maximum possible penetration of the radio signals of optically thick features of the B Ring and its 4 regions of distinct morphology, where most of the ring mass resides. The same is true for regions of optical depth enhancements within the many density and bending waves known to populate the A Ring and some in the B Ring, allowing reliable profiling not only of wave frequencies but also of wave amplitudes, crucial for characterization of wave damping and hence ring viscosity, as well as standard inference of rings surface mass density, particularly of the massive B-Ring. The deep penetration was also crucial for reliable profiling of confined and optically thick ringlets across the ring system, in particular the plateau regions of the C Ring where puzzling behavior had been reported. Radio occultations enjoy the advantage of three coherent observation frequencies allowing not only profiling of ring structure but also constraining the structures' physical properties (e.g., particle size).

PERIAPSE at 161T12:53:15 (R = 1.055 Rs)

Throughout the periapse RSS GRAV/OCC (also INMS/MAG) led experiments, CDA rode along to investigate three different classes of particles: **small** debris particles of the main ring system (<50nm), **big** particles close to the ring plane (>50nm), and **small** particles in the Enceladus **L-Shell** region at high latitudes. Each Rev concentrated on one particular type of particle. Saturn_278_279 was the first of only two Revs where CDA concentrated on SMALL (main ring) particle detection. The small particle detection mode was unique and related to determine the age of Saturn's ring. The main ring is bombarded by interplanetary meteoroids and smaller ejecta particles are released which reflect the composition of the ring particles. The very tiny grains have a high charge-to-mass ratio and couple to the strong magnetic field. These particles can leave the ring plane and can be found at higher latitudes. How icy are the ejecta particles? The interplanetary particles bring silicates, organics and metals into the icy ring material. The degree of contamination is therefore related to the age of Saturn's ring. CDA focused on the measurement of the composition of the small debris particles, characterizing the degree of the pollution and age of the rings.

11 Jun 17 (DOY162) (CONTINUED)

Following the RSS Grav/OCC observations, at the start of DOY 262, VIMS performed southern hemisphere mapping (SHEMMAP001), with CIRS and UVIS riding along. Probing the clouds and gaseous content of the atmosphere above approximately the 3-bar level via Saturn's 5-um thermal radiation emitted from depth (~ 10 bar), VIMS was looking for changes in winds, cloud structures, and perhaps changes in phosphine content as the rate of upwelling changes with season due principally to potential changes in the upper atmosphere temperature. This observation was of particular interest because the southern region was largely in the middle of the long deep winter. This provided among the highest spatial resolution maps of the south polar region obtained during the mission, with pixels spanning just over 300 km.

The Southern Hemisphere map was immediately followed by an 8h30 downlink to Canberra, and then a second Southern Hemisphere map (SHEMMAP002), of nearly equal duration as the first, to complete the observation of South Hemisphere cloud motions (winds)..

The day ended with ISS capturing an Enceladus Plume PIE observation as part of the plume monitoring campaign (CIRS, UVIS, and VIMS rode along). At a distance of about 0.8-1.35 million km from Enceladus, this 12.5 hr observation allowed brightness variations of the entire plume to be observed on short timescales, which is excellent for testing theories of the plume production. This observation covered a region of mean anomaly in which the plume had been unexpectedly bright in the two previous ISS observations. This new data, along with what was expected in Revs 271 and 286, aid in understanding whether or not this feature is persistent. Due to the exceptional length of this particular PIE, it also covered the region of mean anomaly where normal brightening occurs. More data covering this region helps characterize these variations, leading to a better understanding of long term plume behavior.

12 Jun 2017 (DOY 163)

Following the long Plume PIE, VIMS retook the lead with a 3 hour long VIMS Global map (GLOBMAP001). The science was the same as for the other VIMS maps (Southern and Northern), but, from its sub-S/C latitude of -2 degrees, the goal in this case was to cover both hemispheres of Saturn in one go, including parts of the equatorial region missed in previous observations.

About half-way though DOY 163, UVIS began a 3-day long campaign of EUV/FUV observations. If not the last EUV/FUV observation of this mission, it was the last coordinated set to provide observations both over as wide a range of phase angles as possible (between 154 to 139 degrees), and within a short time period, to enhance the science return. The EUV/FUV acquired spectral-image scans of some hydrocarbons such as acetylene and methane in the high atmosphere, as well as signatures of haze and cloud particles.

CONTINUED

By observing at a variety of phase angles in separate observations we built up phase angle coverage and that tells us about the angular distribution of particle scattering which is governed by particle size and shape. These observations also imaged auroral emissions and airglow in the high atmosphere, higher than what CIRS senses.

12 Jun 2017 (DOY 164)

This entire day/observing-period was filled by the second of the three UVIS EUV/FUV observations.

14 Jun 2017 (DOY 165)

This entire day/observing-period was filled by the final of the three UVIS EUV/FUV observations.

15 Jun 15 2017 (DOY 166)

Following downlink, DOY 166 science began with a VIMS Northern Hemisphere Map (NHEMMAP001), with CIRS rider. It complimented southern hemisphere mapping, by covering northern hemisphere only features – the remnants of the Great Storm of 2010-2011, and logging seasonal effects on the north polar vortex and the hexagon feature that encircles the vortex. As well, overall, the long-term repeated north polar views obtained by VIMS throughout the ~5 months of the Grand Finale promised measurements of average polar-vortex and hexagon winds at depth near 2 bar with unprecedented precision and a unique record of cloud/wind evolution on approximately monthly scales.

ISS ended the science in this segment with a Titan Cloud Monitoring observation (CIRS and VIMS riders), part of its continuing campaign.

15 Jun 15 2017 (DOY 167)

On DOY 167 we downlinked on a split Goldstone/Canberra pass to empty the SSR.

Segment Integration Planning

Timeline Gaps and Suggested Observations (1/2)

Saturn 278_279 Legacy

Gap	Start	End	Duration	Phase angle (range)	Rs range	Sub- S/C Lat.	Snapshot (mid-gap)
1a	2017-162T18:10:00	2017-162T22:30:00	000T04:20:00	161.7 to 159.8	15.3 to 16.4	–8 to −7	Vew of Strum from CASSNI 2011 JUN 11 20 00 UTC NEEDE V 18 0° faile of vice.
	Suggested Activities: VIMS Southern Hem	isphere Mosaic Map	04h20m				
1b	2017-163T11:10:00	2017-164T06:05:00	000T18:55:00	155.3 to 149.8	18.9 to 20.8	–2 to +3	Vere of SAUBH from CASSAU 2017 JUNE 12 03 750 UTC 14 37 field of view
	Suggested Activities: VIMS Global Mosaic UVIS EUV/FUV	Мар	03h00m 15h55m				2 19445
2	2017-164T17:55:00	2017-165T00:20:00	000T06:25:00	146.7 to 145.0	21.2 to 21.1	+6 to +7	2017 July 13 2107 CO UTC HEPREY +V. 13 5° field of view I I /
	Suggested Activities: UVIS EUV/FUV		06h25m				SATURN

Gap	Start	End	Duration	Phase angle (range)	Rs range	Sub- S/C Lat.	Snapshot (mid-gap)
3	2017-165T11:25:00 Suggested Activities UVIS EUV/FUV	2017-166T06:10:00	000T18:45:00 <u>18h45m</u>	142.0 to 136.1	20.5 to 18.1	+10 to +15	Ver ef Allen tan Cashe Di Juli 4 of see Non University of see
4	2017-166T18:00:00 Suggested Activities VIMS Northern Hen Titan Meterological	2017-167T00:05:00 isphere Mosaic Map Campaign	000T06:05:00 04h35m 01h30m	131.1 to 127.7	15.5 – 13.8	+20 to +23	Vere er salven fram CASSIN 2017 Juli 15 Juli 2013 DUTC 19 3 ⁻ Hand of vere Rum Har Har Har Luck de

Beginning of Integration:

DATA VOLUME SUMMARY --- TRANSFER FRAME OVERHEAD INCLUDED (80 BITS PER 8800-BIT FRAME)

					OBS	ERVATI	ON_PERI	DD		l I			DOWNLIN	K_PASS			
		 				P4			₽5 	 RECO	ORDED			PLAYE	BACK		
DOWNLINK PASS NAME	Start doy hh:mm	End doy hh:mm	START (Mb)	SCI (Mb)	HK+E (Mb)	TOTAL (Mb)	CPACTY (Mb)	MRGN (Mb)	 OPNAV (Mb)	 SCI (Mb)	ENGR (Mb)	 TOTAL (Mb)	CPACTY (Mb)	MARGN (Mb)	NET_M (Mb)	ARGN (%)	CAROVR (Mb)
SP 278EA M34BWGRSS161 PRIME	161 00:55	161 03:00	0	0	0	0	3322	3322	0	0	12	12	120	107	1768	17%	0
SP 278EA G34BWGRSS161 PRIME	161 03:00	161 11:00	0	0	0	0	3322	3322	0	441	47	488	575	86	1661	13%	0
SP 278EA C34BWGRSS161 PRIME	161 11:00	161 12:01	0	0	0	0	3322	3322	0	224	6	230	98	-133	1574	12%	133
SP 278EA C34BWGRSS162 PRIME	161 14:08	161 16:32	133	508	9	649	3322	2673	0	212	14	875	239	-637	1574	13%	636
SP 278EA C70METNON162 PRIME	162 08:30	162 17:30	636	1044	67	1748	3322	1574	0	505	53	2306	3834	1527	2451	20%	0
SP 278EA C70METNON164 PRIME	164 08:15	164 17:15	0	2236	164	2399	3322	923	0	135	53	2588	3882	1294	3915	46%	0
SP 279EA G34BWGNON165 PRIME	165 02:30	165 10:45	0	107	39	146	3322	3176	0	179	49	373	584	210	2621	57%	0
SP 279EA C34BWGNON166 PRIME	166 08:20	166 17:20	0	249	91	340	3322	2982	0	196	53	590	918	328	2410	60%	0
SP 279EA G70METNON167 PRIME	167 02:15	167 10:45	0	333	38	370	3322	2952	0	493	50	914	2919	2005	2082	68%	0
SP_279EA_C34BWGNON167_PRIME	167 10:45	167 12:18	0	0	0	0	3322	3322	0	75	9	84	161	76	76	48%	0

1 = Jumpstart Period

Beginning of Integration:

Team Report

DATA VOLUME REPORT --- TRANSFER FRAME OVERHEAD NOT INCLUDED

Event	Start doy hh:mm	End doy	hh:mm	CAPS (Mb)	CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIMI (Mb)	RADAR (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	ENGR (Mb)	TOTAL (Mb)
	1 (1 00.55	1.01	02.00		0.0	0.0		0.0	0.0			0.0		0.0	0.0		0.0
SP_2/0EA_M34DWGRSSI01_PRIME	161 00:55	161	11.00	0.0	20.2	10.0	0.0	0.0	21 1	24 6	0.0	225 4	0.0	0.0	0.0	0.0	426 5
SP_278FA_C34BWGR55161_PRIME	161 11:00	161	12.01	0.0	12 5	10.0	0.0	0.0	7 2	4 7	0.0	197 2	0.6	0.0	0.0	0.0	222 2
OBSERVATION NOR	161 12.01	161	14.08	0.0	31 9	10.8	0.0	0.0	15 1	13 2	0.0	432 0	0.0	0.0	0.0	8.8	511 8
SD 278FA C34BWGDSS162 DDIME	161 14:08	161	16.32	0.0	12 3	4 3	0.0	0.0	17 1	10.4	0.0	164 9	1 3	0.0	0.0	0.0	210 2
DAILY TOTAL SCIENCE	161 12:01	161	16:32	0.0	86.9	25.9	0.0	0.0	70.5	62.8	0.0	1119.5	6.3	0.0	0.0	8.8	210.2
OBSERVATION NOR	161 16:32	162	08:30	0.0	45.9	31.4	0.0	0.0	35.3	56.9	0.0	649.5	15.8	200.0	0.0	66.7	1101.7
SP 278EA C70METNON162 PRIME	162 08:30	162	17:30	0.0	17.0	86.4	0.0	0.0	16.0	27.5	0.0	348.1	4.9	0.0	0.0	0.0	500.0
DAILY TOTAL SCIENCE	161 16:32	162	17:30	0.0	62.9	117.8	0.0	0.0	51.3	84.4	0.0	997.7	20.8	200.0	0.0	66.7	
OBSERVATION NOR	162 17:30	164	08:15	0.0	73.1	233.7	0.0	1200.0	68.9	118.6	0.0	182.7	198.2	140.0	0.0	162.0	2377.2
SP 278EA CTOMETNON164 PRIME	164 08:15	164	17:15	0.0	17.0	29.7	0.0	0.0	16.0	27.5	0.0	42.4	1.5	0.0	0.0	0.0	134.2
DAILY TOTAL SCIENCE	162 17:30	164	17:15	0.0	90.1	263.4	0.0	1200.0	84.9	146.1	0.0	225.2	199.7	140.0	0.0	162.0	
DESERVATION NOR	164 17:15	165	02:30	0.0	17.4	0.0	0.0	0.0	16.5	28.3	0.0	43.6	0.0	0.0	0.0	38.7	144.5
SP 279EA G34BWGNON165 PRIME	165 02:30	165	10:45	0.0	15.6	78.3	0.0	0.0	14.7	25.2	0.0	38.9	4.5	0.0	0.0	0.0	177.2
DAILY TOTAL SCIENCE	164 17:15	165	10:45	0.0	33.0	78.3	0.0	0.0	31.1	53.6	0.0	82.5	4.5	0.0	0.0	38.7	
DESERVATION NOR	165 10:45	166	08:20	0.0	40.7	0.0	0.0	0.0	38.4	66.0	0.0	101.8	0.0	0.0	0.0	90.2	337.1
SP 279EA C34BWGNON166 PRIME	166 08:20	166	17:20	0.0	17.0	86.4	0.0	0.0	16.0	27.5	0.0	42.4	4.9	0.0	0.0	0.0	194.3
DAILY TOTAL SCIENCE	165 10:45	166	17:20	0.0	57.7	86.4	0.0	0.0	54.4	93.6	0.0	144.2	4.9	0.0	0.0	90.2	
BSERVATION NOR	166 17:20	167	02:15	0.0	16.8	0.0	0.0	0.0	15.9	27.3	0.0	269.8	0.0	0.0	0.0	37.3	367.1
SP 279EA G70METNON167 PRIME	167 02:15	167	10:45	0.0	16.0	81.0	0.0	0.0	15.1	26.0	0.0	345.8	4.7	0.0	0.0	0.0	488.6
P 279EA C34BWGNON167 PRIME	167 10:45	167	12:18	0.0	2.9	0.0	0.0	0.0	2.8	4.7	0.0	63.1	0.9	0.0	0.0	0.0	74.3
DAILY TOTAL SCIENCE	166 17:20	167	12:18	0.0	35.8	81.0	0.0	0.0	33.7	58.0	0.0	678.7	5.5	0.0	0.0	37.3	
			CAE (Mb	s (CDA (Mb)	CIRS (Mb)	INMS (Mb)	ISS (Mb)	MAG (Mb)	MIM (Mb	II RI	ADAR F (Mb)	RPWS (Mb)	UVIS (Mb)	VIMS (Mb)	PROBE (Mb)	2
OTAL RECORDED (OPNAV data no	ot include	d)	0.	0 30	56.3	652.9	0.0	1200.0	326.0	498.	5 (0.0 324	17.8	241.7	340.0	0.0	

1 = Jumpstart Period

20

Beginning of Integration:

AVERAGE DATA RATE REPORT (calculated over observation periods and downlink passes)

Event	Sta: doy	rt hh:mm	End doy	hh:mm	CAPS (bps)	CDA (bps)	INMS (bps)	MAG (bps)	MIMI (bps)	RPWS (bps)	UVIS (bps)
SD 279FA M24PMCD88161 DDIME	161	00.55	161	02.00	0.0	1049 0	0.0	494 0	060 9	11200 1	152 5
SP 278EA G34BWGRSS161 PRIME	161	03:00	161	11:00	0.0	1048.0	0.0	1080.6	1200.0	11300.1	152.5
SP 278EA C34BWGRSS161 PRIME	161	11:00	161	12:01	0.0	3418.9	0.0	1976.0	1276.2	53879.2	152.5
SP 278NA OBSERV561 NA	161	12:01	161	14:08	0.0	4192.0	0.0	1976.0	1730.3	56693.8	0.0
SP 278EA C34BWGRSS162 PRIME	161	14:08	161	16:32	0.0	1419.2	0.0	1976.0	1200.0	19080.8	152.5
SP 278NA OBSERV161 NA	161	16:32	162	08:30	0.0	799.1	0.0	614.7	989.3	11300.1	275.2
SP_278EA_C70METNON162_PRIME	162	08:30	162	17:30	0.0	524.0	0.0	494.0	850.0	10745.1	152.5
SP 278NA OBSERV162 NA	162	17:30	164	08:15	0.0	524.0	0.0	494.0	850.0	1310.0	1420.8
SP_278EA_C70METNON164_PRIME	164	08:15	164	17:15	0.0	524.0	0.0	494.0	850.0	1310.0	46.6
SP 278NA OBSERV164 NA	164	17:15	165	02:30	0.0	523.1	0.0	494.0	850.0	1310.0	0.0
SP 279EA G34BWGNON165 PRIME	165	02:30	165	10:45	0.0	524.0	0.0	494.0	850.0	1310.0	152.5
SP 279NA OBSERV165 NA	165	10:45	166	08:20	0.0	524.0	0.0	494.0	850.0	1310.0	0.0
SP 279EA C34BWGNON166 PRIME	166	08:20	166	17:20	0.0	524.0	0.0	494.0	850.0	1310.0	152.5
SP 279NA OBSERV166 NA	166	17:20	167	02:15	0.0	524.0	0.0	494.0	850.0	8405.8	0.0
SP 279EA G70METNON167 PRIME	167	02:15	167	10:45	0.0	524.0	0.0	494.0	850.0	11300.1	152.5
SP_279EA_C34BWGNON167_PRIME	167	10:45	167	12:18	0.0	524.0	0.0	494.0	850.0	11300.1	152.5

1 = Jumpstart Period

Good Waypoints

OBS_NAME	START	END	POS_X_2_NSP	POS_X_2_NEP	NEG_X_2_NSP	NEG_X_2_NEP	POS_Z_2_NSP	POS_Z_2_NEP	NEG_Z_2_NSP	NEG_Z_2_NEP	NEG_X_2_SUN	NEG_Z_2_EARTH
SP_278NA_OBSERV162_NA	2017-162T18:00:00	2017-164T02:30:00	**BAD**	**BAD**	OK	ОК	ОК	ОК	**BAD**	**BAD**	OK	OK
SP_278NA_OBSERV164_NA	2017-164T11:00:00	2017-165T02:30:00	**BAD**	**BAD**	ОК	ОК	ОК	ОК	**BAD**	**BAD**	ОК	OK
SP_279NA_OBSERV165_NA	2017-165T10:45:00	2017-166T08:20:00	**BAD**	**BAD**	ОК	ОК	ОК	OK	**BAD**	**BAD**	OK	OK
SP_279NA_OBSERV166_NA	2017-166T17:20:00	2017-167T02:15:00	**BAD**	**BAD**	ОК	ОК	ОК	ОК	**BAD**	**BAD**	ОК	ОК

Good Downlink Attitudes

DOWNLINK	START	END	POS_X_2_NSP	POS_X_2_NEP	NEG_X_2_NSP	NEG_X_2_NEP	POS_Y_2_NSP	POS_Y_2_NEP	NEG_Y_2_NSP	NEG_Y_2_NEP	ROLL_FLAG
SP_278EA_C70METNON162_PRIME	2017-162T08:15:00	2017-162T18:00:00	ОК	OK							
SP_278EA_G34BWGNON164_PRIME	2017-164T02:30:00	2017-164T11:00:00	ОК	OK	ОК	OK	ОК	ОК	ОК	ОК	ОК
SP_279EA_G34BWGNON165_PRIME	2017-165T02:30:00	2017-165T10:45:00	ОК	OK	ОК	OK	OK	ОК	ОК	OK	OK
SP_279EA_C34BWGNON166_PRIME	2017-166T08:20:00	2017-166T17:20:00	ОК	ОК							
SP_279EA_G70METNON167_PRIME	2017-167T02:15:00	2017-167T10:45:00	ОК	OK	**BAD**	**8AD**	OK	ОК	ОК	OK	0
SP_279EA_C70METNON167_PRIME	2017-167T10:45:00	2017-167T12:18:00	OK	OK	**8AD**	**BAD**	ОК	OK	ОК	ОК	0

RBOT Friendly

OBSERVATION PERIOD	START	END	POS_X	NEG_X	POS_Z	NEG_Z
SP_278NA_OBSERV162_NA	2017-162T18:00:00	2017-164T02:30:00		178.2/ 32.8	178.2/ 32.8	
SP_278NA_OBSERV164_NA	2017-164T11:00:00	2017-165T02:30:00	1222282	178.2/ 32.8	178.2/ 32.8	Sinnis (
SP_279NA_OBSERV165_NA	2017-165T10:45:00	2017-166T08:20:00	*****	178.2/ 32.8	178.2/ 32.8	
SP_279NA_OBSERV166_NA	2017-166T17:20:00	2017-167T02:15:00	1222223	178.2/ 32.8	178.2/ 32.8	52222

Waypoint 1 (2017-161T03:00:00 – 162T18:10:00):

XBAND to EARTH, POS_X to 299.7/63.6

Not shown here since ORS is not pointed toward Saturn in this period. Waypoint was chosen to maximize CDA science.

Waypoint 2 (2017-162T18:10:00 – 164T06:45:00): NEG_Y to Saturn, NEG_X to NSP

Waypoint 3 (2017-164T17:55:00 - 166T06:50:00): NEG_Y to Saturn, NEG_X to Sun

Waypoint 4 (2017-166T18:00:00 – 167T00:45:00): NEG_Y to Saturn, NEG_X to NSP

- Pointing:
 - Waypoints
 - No valid waypoint for Periapse observation period at start of segment 2017-161T00:55 --- 162T07:00. The waypoint attitude is XBAND to Earth / POS_X to 299.7/63.6. The overlying science requests (primarily RSS GRAV/OCC) mostly use this attitude. There are CIRS and VIMS consumable heating for which waivers will be written (see next bullet). This is part of the jumpstart/POST predesign period, which has been verified in PDT.
 - CIRS and VIMS temperature/boresight violations.
 - CIRS consumable FR heating violation (Max heating of T_{max}= 85.0 deg, ∆T =10.4 degrees @ 161T14:12 SCET) during RSS Grav/OCC experiment (SP_278EA_C70METRSS461_PRIME)
 - Consumable FR waiver will be required (SPLAT item)
 - E-mail approval by M. Flasar 11/16.
 - CIRS boresight to sun incursions of < 15 degrees during VIMS_SHEMMAP001_PRIME (approximately between 2017-162T02:58 162T06:29), and within16 hr of CIRS science.
 - CIRS Boresight Operational FR waiver needed (SPLAT item)
 - E-mail approval by M. Flasar; Same 11/16 email above.
 - VIMS consumable FR heating violation (Max heating of T_{max} = 67.0 deg, ∆T = 7.3 degrees @ 161T15:20 SCET) during RSS Grav/OCC experiment (SP_278EA_C70METRSS461_PRIME).
 - Consumable FR waiver will be required (SPLAT item)
 - E-mail approval by E. Audi, R. Brown 09/29.
 - Predesigned (in PDT) and merged periapse jumpstart SASFs from 2017-161T12:01 162T07:00 (SPLAT item) RSS_278RI_CRDOCC001_PRIME (POST) RSS_278RI_PERIOCC001_PRIME (POST) VIMS_284SA_SHEMMAP001_PRIME (Jumpstart)
- Data Volume:
 - No issues, No carryover

Notes (2/4)

DSN:

Level 3 Station Requests

- Level 3 request for DSN stations between 2017-160T19:15 and 2017-161T03:45 ERT (for RSS Proximal GRAV/OCC experiment).
 DSS-55 (DOY160), DSS-25, DSS-43, DSS-35, DSS-63, DSS-55 (DOY161)
- Station DSS-55 request for RSS Grav/Occ crosses TOST_278/Saturn_278_279 segment boundaries. The corresponding DL "PRIME" block had to be split into the following two requests to avoid CIMS issues.
 - SP_278EA_M34BWGRSS160_PRIME in TOST_278 segment (2017-160T19:30:00 to 161T00:55:00)
 - SP_278EA_M34BWGRSS161_PRIME in SATURN_278_279 segment (2017-161T00:55:00 to 161T03:00:00)

Once in sequence, SIP leads may merge the two PRIME requests if desired.

- Station Changes/Upgrades
 - SP_278NA_C70METNON164_SP was upgraded from Goldstone 34m (DSS-25) with permission of Dep SIP manger 07/29/16, and moved to Canberra 9with track shift), due to possible extended maintenance conflict with G70.
 - G34/C70 split DSN pass ending sequence (167T02:15) was changed from original G70/C70 (with boundary change) to minimize 70m use and to avoid G70 extended maintenance conflict.
- Juno Conflicts
 - SP_278NA_C70METNON164: ~50% overlap with preceding Juno request (per RevL only of Juno conflict analysis spreadsheet).
 - SP_279EA_C70METNON167: Conflict with Juno request (per RevL only of Juno conflict analysis spreadsheet) that arose due to move to accommodate G70 maintenance.

(Continued on Next Page)

- DSN (Continued):
 - Dispositions of ap_downlink report check warnings
 - 2017-161T00:45:00 (SP_278EA_DSS84MRSS161_SP) DSS code is inconsistent with complex/antenna 2017-161T18:35:00 (SP_278EA_DSS74NRSS161_SP) DSS code is inconsistent with complex/antenna 2017-161T22:15:00 (SP_278EA_DSS84MRSS461_SP) DSS code is inconsistent with complex/antenna Ignore all DSS code 0142 is to be used for ESA stations.
 - 2017-161T00:45:00 (SP_278EA_DSS84MRSS161_SP) has a short precal time for an RSS pass 2017-161T18:35:00 (SP_278EA_DSS74NRSS161_SP) has a short precal time for an RSS pass 2017-161T22:15:00 (SP_278EA_DSS84MRSS461_SP) has a short precal time for an RSS pass Ignore all – Time of 45m is confirmed the proper pre-cal time for ESA stations
 - 2017-161T00:55:00 (SP_278EA_M34BWGRSS161_PRIME) does not follow an observation period
 Ignore Per design of RSS Proximal Grav/OCC experiment, the segment starts with a downlink which confuses ap_downlink
 - 2017-161T03:00:00 (SP_278EA_G34BWGRSS161_PRIME) has an unusual DSN lockup time; usual for post-handover passes is 60 sec.
 - 2017-161T11:00:00 (SP_278EA_C70METRSS161_PRIME) has an unusual DSN lockup time; usual for post-handover passes is 60 sec
 Ignore all Per design/requirement of RSS Proximal Grav/OCC experiment.

- Resource checker:
 - Dispositions of resource checker items.

The following two items appear because the Saturn_278_279 segment does not start with a waypoint. The waypoint is defined near the end of the preceding TOST_278 segment. This confuses Resource Checker. Both warnings will disappear once segments are integrated into the sequence.

- 2017-162T07:00:00 (SP_278EA_YGAP162_PRIME) Turn to downlink does not have the request name DLTURN. Change request name to contain DLTURN.
- 2017-162T02:38:00 (VIMS_278SA_SHEMMAP001_PRIME) Turn away from downlink does not have the name WAYPTTURN.
- Opmodes:
 - RWA-slow mode RSS3BRWAS is used between 161T10:00:18 and 162T02:38:00.

(ISS & VIMS asleep, UVIS No HDAC modulation)

 HAND EDITS required (by SIP in PDT sasf and RSS in their deliveries) – all turns in this timeperiod should use "slow" acceleration rates of (x,y,z) = (0.005, 0.008, 0.012 mrad/s²). (SPLAT item). Applicable requests:

SP_278EA_C70METRSS161_PRIME, RSS_278RI_PERIOCC001_PRIME SP_278EA_C70METRSS461_PRIME, RSS_278RI_CRDOCC001_PRIME

- Hydrazine:
 - N/A
- Special Activities:
 - RSS Gravity / Rings occultation experiment 2017-160T19:25:00 to 2017-162T02:38:00.

Note: First 5h30 minutes of range listed above is within the preceding TOST_278 segment. RSS performs warmup and conducts some KA-band data monitoring during this time.

- ISS_278EN_PLUME001_PIE (See science highlights)

Liens (1/1)

Sequence Liens (should all be SPLAT items):

- SPLAT100000216: CIRS consumable FR heating violation (Max heating of T_{max}= 85.0 deg, ∆T =10.4 degrees @ 161T14:12 SCET) during RSS Grav/OCC experiment. Consumable FR waiver will be required. E-mail approval by M. Flasar 11/16.
- SPLAT100000218: CIRS boresight to sun incursions of < 15 degrees approximately between 2017-162T02:58 162T06:29, within 16 hr of CIRS science. CIRS Boresight Operational FR waiver needed. E-mail approval by M. Flasar 11/16.
- SPLAT100000217: VIMS consumable FR heating violation (Max heating of T_{max} = 67.0 deg, ∆T= 7.3 degrees @ 161T15:20 SCET) during RSS Grav/OCC experiment. Consumable FR waiver will be required. E-mail approval by E. Audi, R. Brown 09/29.
- SPLAT100000219: The following activities occur while in the RSS3BRWAS opmode (161T10:00:18 and 162T02:38:00):

SP_278EA_C70METRSS161_PRIME, RSS_278RI_PERIOCC001_PRIME SP_278EA_C70METRSS461_PRIME, RSS_278RI_CRDOCC001_PRIME SIP and RSS should us slow accelerations on all turns [Max accel(x,y,z) = (0.005, 0.008, 0.012 mrad/s^2)] contained within.

SPLAT100000220: The following requests from 2017-161T12:01 --- 162T07:00 in Saturn_278_279 have been pre-designed in PDT during integration.
 RSS 278RI CRDOCC001 PRIME (POST)

(POST)

(Jumpstart)

RSS_278RI_CRDOCC001_PRIME RSS_278RI_PERIOCC001_PRIME VIMS_284SA_SHEMMAP001_PRIME

teams identified shall deliver these designs as part of the Port 1 delivery. SIP leads to monitor.

SPLAT100000252: The following requests from 2017-161T12:01 --- 162T07:00 in Saturn_278_279 are **POST** observations, pre-designed in PDT during integration.

RŠS_278RI_CRDOCC001_PRIME (POST) RSS_278RI_PERIOCC001_PRIME (POST) Saturn_278_279 RBOT assessment (By Dave Bates):

No changes to the nominal plan/merge was required to satisfy the RBOT solution.