# The VIMS Wavelength and Radiometric Calibration 

Roger N. Clark ${ }^{1}$, Robert H. Brown ${ }^{2}$, Dyer M. Lytle ${ }^{2}$
${ }^{1}$ Planetary Science Institute, Lakewood, CO, 80227
${ }^{2}$ Department of Planetary Sciences, University of Arizona, Tucson, AZ, 85721

NASA Planetary Data System
Version 1.20
10/05/2016


#### Abstract

We derive a new radiometric calibration for the Visual and Infrared Mapping Spectrometer (VIMS) on Cassini. Since entering orbit in 2004, the VIMS instrument has undergone small shifts in the wavelength calibration of the spectrometer. The maximum shift is currently 10.4 nm ( 0.65 channels) and is estimated to be 0.71 channels at the end of mission. The wavelength shifts now require a timedependent radiometric calibration technique to be deployed to preserve radiometric accuracy. Herein we quantify the time-dependent wavelength shift, and describe a compensatory scheme that will provide an accurate calibration for both specific intensity and I/F for VIMS measurements made during the Cassini Mission.


## Introduction

The radiometric responsivity of a spectrometer or imaging instrument is complex, depending upon many factors, some of the most important being the aperture collection area, spectral transmission of the optical system, and the response function of the detector(s). The VIMS is an imaging spectrometer (Miller et al., 1996, Brown et al., 2004) whose spectral responsivity varies with angular position in the field of view and with wavelength. The IR chanel primary optical design incorporates Ritchey Cretien foreoptics, a reverse-Dahl-Kirkham collimator with a large central obscuration, a triply blazed reflection grating, Cassegrain camera optics and a linear, 256-element array of InSb detectors overlain with 4 order-sorting/thermal-blocking filter segments. The VIS channel uses an off-axis Shafer telescope with an Offner design spectrometer. The flat-field response of the instrument varies with wavelength, and a flat-field image cube with 352 wavelengths is thus employed to correct the system response over the field of view relative to the instrument's boresight pixel. The spectral bandpass of the instrument also varies slightly across the full range of VIMS' spectral response, adding to the complexity of the calibration. Additional issues arise due to ringing in the instrument response function driven primarily by the blocking/order-sorting filters on the VIMS focal plane (in some cases $\pm 10 \%$ or more [Figure 1]). Because of the ongoing wavelength shifts in the instrument, relative to when the instrument response function was measured on the ground and after the Cassini Jupiter flyby in late 2000, artifacts in radiometrically calibrated spectra result because the response function at any later time is actually sampled at different wavelengths than the wavelength set used in the ground measurements. The resulting artifacts are primarily caused by the use of a response function in multiplicative or divisive operations sampled using the original, ground wavelength set, and then used to calibrate to specific intensity or I/F instrument data obtained at a later time and consequently done with a different set of wavelengths. Below we describe our methodology to track the shifting wavelengths, and then apply a time-dependent, radiometric calibration that compensates for all the known effects.


Figure 1. VIMS order-sorting/blocking filter transmission for the $1.6-3.0$ micron segment. The ringing in the transmission propagates into the radiometric calibration in a complex way because shift in wavelength sample different places in the response function. (From Al-Jumaily, 1991).

## VIMS Wavelengths Versus Time

The VIMS calibration pipeline and PDS-delivered data used a wavelength set and FWHM set measured during thermal vacuum testing at JPL before launch (Brown et al., 2004), but shifted by 1.3 channels as observed in Galilean Satellite data obtained during the Jupiter flyby (McCord et al., 2001). The calibration also incorporated a small, additional set of corrections to a few channels near the wavelength of the 4.25 micron $\mathrm{CO}_{2}$ absorption (Cruikshank et al., 2010). Here we employ terminology to describe the various corrections to the VIMS Radiometric Calibrations by using a numbering scheme RCnn (Radiometric Calibration nn). RC17 was the primary calibration used until June, 2016 (Clark et al., 2012), and has been used in all data processed through the VIMS calibration pipeline, and all files delivered to the PDS in the form of calibration files prior to the calibration described herein.

The wavelength calibration shift of the instrument since Cassini's Saturn Orbit Insertion (SOI) is the primary driver of the need to employ a time-dependent radiometric calibration, and has been intensively studied since about 2013. The reader is directed to a separate white paper in the PDS describing the details of the VIMS time-dependent wavelength calibration, which we briefly describe here. Two methods for checking the VIMS wavelengths have been employed: (1) monitoring, as a function of time, the reflectivity in 3 windows of the Titan spectrum (1.6, 2.0, 2.8 microns; see the PDS white paper for details) by fitting Gaussian profiles to the window peaks; and (2) using the VIMS internal, wavelength-calibration, laser diode (central wavelength $\sim 0.979$ microns), and employing a fit to the Gaussian intensity profile of the calibration diode convolved with the response of 8 VIMS channels centered near peak intensity of the calibration diode. The result is the derivation of a timedependent shift of the current wavelengths relative to the set extant at the time of Cassini's SOI. Figures 2, 3 show the results from both methods.


Figure 2. VIMS wavelength shift versus time for two methods: Titan atmospheric windows (red points), and VIMS calibration diode (dark blue points).


Figure 3. VIMS wavelength shift as measured by the calibration diode. The central, solid line is a linear regression, and the two dotted lines are $\pm 1$ sigma as measured relative to the linear fit. It is not certain if the outlier points indicate real short term variations, but there are some indications that the fluctuations may be caused by temperature cycling of the VIMS spectrometer optics (see PDS white paper).

Because the shifts are small, we specify the shift on a yearly basis as described in Table 1. The shifts are relative to the new "standard 2004.0" wavelengths given in Table 2.

## Calibration Equations

The basic equation we employ for calibrated, specific intensity, I, at one wavelength is:
(1) $I=\frac{\left(R_{D N}-\text { Dark }\right)}{\text { flat }} C B$,
where $\mathrm{R}_{\mathrm{DN}}$ is the instrument raw data number in a given exposure, Dark is the instrument measured dark current and thermal background (a dark/thermal background measurement is made after every VIMS scan line using the same exposure time), and flat is the VIMS flat-field response at the given wavelength and position within the field of view normalized to the response of the boresight pixel (i.e., the relative response of the boresight pixel in the flat-field cube is 1 at every wavelength). The units of equation 1 are: energy/time/area/bandpass/steradian.

C is defined as the calibration-multiplier vector which includes system transmission, grating efficiency, detector response, and divided by the exposure time (see equations 4 a and 4 b , below).
(2) $B=\frac{h c}{\lambda A \Omega \Delta \lambda}$,
where
$\lambda$ = wavelength,
$\Delta \lambda=$ full width, half maximum, FWHM,
$\Omega=$ solid angle $=2.5 \times 10^{-7}$ steradian,
$\mathrm{A}=$ aperture area IR: $\mathrm{A}=96.1 \mathrm{~cm}^{2},=0.00961 \mathrm{~m}^{2}$, VIS: $\mathrm{A}=15.88 \mathrm{~cm}^{2}, \mathrm{~A}=0.001588 \mathrm{~m}^{2}$,
$\mathrm{c}=$ speed of light $=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$, and
$\mathrm{h}=$ Planck constant $=6.626 \times 10^{-27} \mathrm{erg}-\mathrm{s}=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}\left(=\mathrm{W} \mathrm{s}{ }^{2}\right)$.
The calibration to apparent reflectance, I/F, referred to that of a Lambert disk (a perfect diffuse reflector) is (note that the factor of $\pi$ comes from the result that $I / F$ for a Lambert disk is $\pi^{-1}$ ):
(3)
$\frac{I}{F}=\pi \frac{\left(R_{\text {DN }}-\text { Dark }\right)}{\text { flat }} \times \frac{C B}{S}$
where $t$ is the exposure time -0.004 second for the IR, or just the exposure time in seconds for the VIS channel, and S is the solar spectrum from Thompson et al. (2015), corrected to the flux extant at the heliocentric distance of the object in question. The 4 millisecond IR exposure time correction is due to settling time after each mirror movement of the scanning secondary and was derived by McCord et al., (2004).

In the VIMS instrument, A and $\Omega$ are more complex (see Brown et al., 2005). In standard resolution mode, the VIS channel bins $3 x 3$ pixels to make a $0.5 \times 0.5$ mradian IFOV, and the IR IFOV is actually $0.5 \times 0.25$ mradian which gets moved 0.25 mradian half way through the integration to make a 0.5 x 0.5 mradian square pixel. In high resolution mode, the VIS channel is $0.17 \times 0.17$ and the IR is 0.5 x 0.25 mradian. The full telescope aperture, a 22.9 cm diameter Ritchey Cretien telescope, $800-\mathrm{mm}$ focal length, has obscuration in both the Ritchey-Cretien secondary, and in the inverse Dahl-Kirkham collimator and Cassegrain spectrometer optics. We use different constants to scale the relative multiplier (equation 4, below) to compensate for these factors to derive the value of C for each VIS and IR channel and each wavelength.

## Derived Spectral Properties

The wavelength calibration and FWHM for VIMS were measured on the ground in a thermal vacuum chamber before launch (Brown et al., 2005). At the Jupiter fly-by it was determined that the IR wavelengths had shifted 1.3 channels from the ground calibration (McCord et al., 2001). That 1.3channel shift from the ground calibration defined the VIMS standard wavelengths for post launch to RC17. No apparent shift occurred after the Jupiter fly-by and before Saturn orbit insertion.

Using the measured wavelength shifts from Table 1 we modeled the effect of the shift on solar port data from 2005 to 2012 (Figure 4). The model does not include order-sorting/blocking-filter response. Unfortunately, as the data in Figure 1 show, the analog plot of filter transmission made over 20 years ago is not precise enough for tracking the effects of the wavelength shifts.


Figure 4: Solar port data from 2005 divided by data from 2012 (blue line) shows larger than predicted changes than just due to solar spectral structure.

Investigation of the causes of the discrepancy shown in Figure 4 revealed that, besides ringing in the order sorting filter transmission, fine structure in the original measured wavelengths of each vims channel and the derived FWHM display periodic structure which we traced to a periodic error in the grating position of the test monochromater used in the ground-based, thermal-vacuum testing of VIMS. Figures 5 and 6 show the trends.


Figure 5. VIMS IR wavelengths divided by a linear fit to the end channels of the IR spectrometer (blue line). A cubic-spline fit (black line) is our new derivation: the new RC19 2004.0 "standard" wavelength set (values in Table 2). The blue line is a plot of the wavelengths derived in thermal vacuum testing before launch and shifted 1.3 channels (derived that the Jupiter fly-by) with a correction for the wavelengths around the 4.25 micron $\mathrm{CO}_{2}$ atmospheric absorption (Cruikshank et al. 2010).


Figure 6. VIMS IR-channel bandpasses (FWHM) in microns (blue line) derived during thermal vacuum testing before launch. A cubic-spline fit (black line) defines the new RC19 FWHM set (values in Table 2).

## Calibration Multiplier

The calibration multiplier vector, C , from equation 1 is the major factor that remains to be determined. Ideally it could be derived from measurements of a known, standard reflector illuminated with a source of known intensity, such as a calibration target on the spacecraft illuminated by the Sun, but such a device was descoped from VIMS in early Cassini budget cuts, thus we are left with only more approximate methods. Standard stars (that is, stars whose spectral specific intensities are known with the required precision) could be used, but because they are sub-pixel to VIMS, and because the VIMS pixel response function is variable within a pixel, unresolved objects like stars cannot be used with sufficient accuracy. Therefore, the only practical avenue that remains involves the use of known spectra of Saturn's icy satellites and rings, Saturn itself, and Titan. Using a cross correlation of the spectra of the various objects, we were able to ascertain in general which "bumps and wiggles" in the response function were instrument related, and which were real features in the spectra of the various objects.

Furthermore, because the reflection spectra of solar-systems objects can be strong functions of their illumination geometry, the spectra of some objects were analyzed as a function of phase angle. For example, high-phase observations of Saturn's D and F-rings are expected to be dominated by diffraction, with muted spectral signatures of water ice, except near the water-ice vibrational fundamentals, where the real index of refraction becomes close to 1.0. The derived, relative-multiplier vector for 2004.0 is shown in Figure 7.

VIMS has order-sorting filter gaps near 1.65, 3, and 3.9 microns (the upward spike in Figure 7), and they do not shift with time because they are fixed with respect to the detector array, whereas the spectrum of an object projected onto the detector array changes with time, and thus all other structure in spectral measurements does change in the IR channel of VIMS. The sampled wavelengths of the visible channel do not shift, thus its ground calibration is sufficient for calibration of the visiblechannel data. The VIMS-IR multiplier vector (excluding the filter gap transmission) from Figure 7 was cubic-spline interpolated to the wavelength set derived for each year and given in Table 1. We then applied the effects of the filter-gap transmission.


Figure 7. The relative calibration multiplier set for year 2004.0, used in Equation 4. The vector is resampled with time as described in the text.

The results of the new calibration are illustrated in Figure 8. The RC17 calibration, which does not take into account the effects of shifting wavelengths shows increasing ringing (compare The D-ring 2006 RC 17 with F-ring 2015 RC17 spectra). The new RC19 calibration, which tracks the effects of the shifting wavelength sets, eliminates the ringing problems.

Remaining issues and uncertainties include:

1) The small rise near 2.75 microns may or may not be real.
2) The feature near 3 microns is on the edge of the order sorting filter gap and may or may not be real. If real the feature is most likely due to an $\mathrm{N}-\mathrm{H}$ stretch (e.g. ammonia or ammonium compound).
3) The filter gap transmission around 1.65 and 3.9 microns may need adjustment


Figure 8. Example VIMS spectra using RC17 which was constant with time, and the new RC19 method described here.

## Application/implementation of the time-dependent transfer functions to calibration of data

Calibration of VIMS uses equation 3, above. The value of B from equation 2 is computed by selecting the wavelengths and FWHM for the time of the observation, and MKS units as follows.
$\Omega=2.5 \times 10^{-7}$ steradian.
$\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
$\mathrm{A}=0.00961 \mathrm{~m}^{2}$ (VIS), $0.001588 \mathrm{~m}^{2}$ (IR).
$h=6.626 \times 10^{-34} \mathrm{~J}-\mathrm{s}\left(=\mathrm{W} \mathrm{s} \mathrm{s}^{2}\right)$.
$\lambda=$ wavelength in meters (ascii listings are in microns. So divide by 1000.0).
$\Delta \lambda=$ FWHM in microns.

ASCII listing of the value of B for each VIMS channel is given in the Appendix.
In equation 3,
(4a) $\mathrm{C}_{\text {VIS }}=29554 . *$ calibration multiplier set from the appendix / ( $\mathrm{t} *$ gain ),
(4b) $\mathrm{C}_{\mathrm{IR}}=8112$. * calibration multiplier set from the appendix / ( t * gain),
the calibration multiplier set is one of the files with a name of
vims.calibration.multiplier.RC19-20NN.N.txt
where 20NN.N is the year. The constants in 4 a and 4 b apply to both standard and high resolution modes. Almost all VIMS observations have been carried out with gain $=1$.

The Thompson et al. (2015) solar spectra convolved to VIMS are also given in the Appendix for each wavelength and calibration multiplier set.

The resulting units from equation 3 are dimensionless (I/F). To get to radiance, multiply by the solar spectrum. The supplied VIMS-convolved solar spectra are in units of Watts / $\mathrm{m}^{2} / \mathrm{micron}$.

## Plans for 2017-EOM

Wavelength calibration measurements using the instrument's calibration diode will continue to be made every few days until the end of the Cassini mission. When all of the data regarding the shifts are collected, we will then derive a final set of wavelengths which will cover each year during the Cassini Orbital Tour. From those wavelengths will be derived the time-dependent calibration vectors to be applied to all of the VIMS raw data gathered during the Cassini Orbital tour. Those results will be deposited in the PDS 3-6 months after the end of the Cassini Mission. No further analysis will be carried out by the VIMS Team after the end of the Cassini Mission.

## Appendices

A tar file, vims-calibration+wavelengths-vs-time-files.tar, contains ascii listings of the wavelengths, calibration multiplier, the computed B values (equation 2), and the VIMS-convolved solar spectrum as a function of time. The time increment is 1 year centered mid year. The VIMS wavelength shift is small enough that this granularity is sufficient for most applications, as the shift between these calibrations is less than 0.0 channel.

## Conclusions

The VIMS wavelengths are shifting small amounts per year (less than 0.1 channel), necessitating the need for a time-dependent calibration. We have derived a new methodology that tracks this change and produces significantly better spectra with lower noise and lower artifacts. This new calibration should enable greater confidence in observed spectral features, leading to detection of lower abundance components and therefore new and better science.

## Table 1

| Time | Shift <br> $(\mathrm{nm})$ | Shift <br> Channel | Add to standard wavelength set: <br> (microns) |
| :---: | :---: | :---: | :--- |
| 2004.0 | 0.0 | 0.000 | 0.0000 (= standard wavelength set) |
| 2005.5 | 0.4 | 0.022 | 0.0004 |
| 2006.5 | 1.9 | 0.114 | 0.0019 |
| 2007.5 | 3.4 | 0.206 | 0.0034 |
| 2008.5 | 4.9 | 0.299 | 0.0049 |
| 2009.5 | 6.0 | 0.369 | 0.0060 |
| 2010.5 | 6.0 | 0.369 | 0.0060 |
| 2011.5 | 7.0 | 0.431 | 0.0070 |
| 2012.5 | 7.7 | 0.474 | 0.0077 |
| 2013.5 | 8.4 | 0.517 | 0.0084 |
| 2014.5 | 9.0 | 0.557 | 0.0090 |
| 2015.5 | 9.7 | 0.606 | 0.0097 |
| 2016.5 | 10.4 | 0.650 | 0.0104 |
| 2017.5 | 11.1 | 0.694 | 0.0111 (projected) |

Table 2
VIMS Standard Wavelengths (2004.0)

|  | Standard <br> wavelength <br> (microns) | FWHM <br> (microns) |
| :---: | :---: | :---: |
|  |  |  |
| 1 | 0.350540 | 0.007368 |
| 2 | 0.358950 | 0.007368 |
| 3 | 0.366290 | 0.007368 |
| 4 | 0.373220 | 0.007368 |
| 5 | 0.379490 | 0.007368 |
| 6 | 0.387900 | 0.007368 |
| 7 | 0.395180 | 0.007368 |
| 8 | 0.402520 | 0.007368 |
| 9 | 0.409550 | 0.007368 |
| 10 | 0.417310 | 0.007368 |
| 11 | 0.424360 | 0.007368 |
| 12 | 0.431840 | 0.007368 |
| 13 | 0.439190 | 0.007368 |
| 14 | 0.446520 | 0.007368 |
| 15 | 0.453720 | 0.007368 |
| 16 | 0.461630 | 0.007368 |
| 17 | 0.468410 | 0.007368 |
| 18 | 0.476220 | 0.007368 |
| 19 | 0.486290 | 0.007368 |
| 20 | 0.489670 | 0.007368 |
| 21 | 0.497770 | 0.007368 |
| 22 | 0.506280 | 0.007368 |
| 23 | 0.512220 | 0.007368 |


| 24 | 0.519630 | 0.007368 |
| :--- | :--- | :--- |
| 25 | 0.527660 | 0.007368 |
| 26 | 0.534160 | 0.007368 |
| 27 | 0.541560 | 0.007368 |
| 28 | 0.549540 | 0.007368 |
| 29 | 0.556140 | 0.007368 |
| 30 | 0.563530 | 0.007368 |
| 31 | 0.571310 | 0.007368 |
| 32 | 0.578100 | 0.007368 |
| 33 | 0.585480 | 0.007368 |
| 34 | 0.593120 | 0.007368 |
| 35 | 0.599380 | 0.007368 |
| 36 | 0.607570 | 0.007368 |
| 37 | 0.615050 | 0.007368 |
| 38 | 0.622070 | 0.007368 |
| 39 | 0.629400 | 0.007368 |
| 40 | 0.637040 | 0.007368 |
| 41 | 0.644080 | 0.007368 |
| 42 | 0.651420 | 0.007368 |
| 43 | 0.659100 | 0.007368 |
| 44 | 0.666090 | 0.007368 |
| 45 | 0.673420 | 0.007368 |
| 46 | 0.681020 | 0.007368 |
| 47 | 0.688030 | 0.007368 |
| 48 | 0.695350 | 0.007368 |
| 49 | 0.702880 | 0.007368 |
| 50 | 0.710000 | 0.007368 |
| 51 | 0.717330 | 0.007368 |
| 52 | 0.724840 | 0.007368 |
| 53 | 0.731980 | 0.007368 |
| 54 | 0.739300 | 0.007368 |
| 55 | 0.746760 | 0.007368 |
| 56 | 0.753960 | 0.007368 |
| 57 | 0.761280 | 0.007368 |
| 58 | 0.768740 | 0.007368 |
| 59 | 0.775950 | 0.007368 |
| 60 | 0.783280 | 0.007368 |
| 61 | 0.790720 | 0.007368 |
| 62 | 0.797930 | 0.007368 |
| 63 | 0.805220 | 0.007368 |
| 64 | 0.812620 | 0.007368 |
| 65 | 0.819890 | 0.007368 |
| 66 | 0.827210 | 0.007368 |
| 67 | 0.834630 | 0.007368 |
| 68 | 0.841900 | 0.007368 |
| 69 | 0.849220 | 0.007368 |
| 70 | 0.856630 | 0.007368 |
| 71 | 0.863910 | 0.007368 |
| 72 | 0.871220 | 0.007368 |
|  |  |  |


| 73 | 0.878630 | 0.007368 |  |
| :---: | :---: | :---: | :---: |
| 74 | 0.885890 | 0.007368 |  |
| 75 | 0.893860 | 0.007368 |  |
| 76 | 0.900320 | 0.007368 |  |
| 77 | 0.907870 | 0.007368 |  |
| 78 | 0.915180 | 0.007368 |  |
| 79 | 0.922540 | 0.007368 |  |
| 80 | 0.929830 | 0.007368 |  |
| 81 | 0.937130 | 0.007368 |  |
| 82 | 0.944450 | 0.007368 |  |
| 83 | 0.951770 | 0.007368 |  |
| 84 | 0.959070 | 0.007368 |  |
| 85 | 0.966380 | 0.007368 |  |
| 86 | 0.973820 | 0.007368 |  |
| 87 | 0.981000 | 0.007368 |  |
| 88 | 0.988830 | 0.007368 |  |
| 89 | 0.995880 | 0.007368 |  |
| 90 | 1.002950 | 0.007368 |  |
| 91 | 1.010050 | 0.007368 |  |
| 92 | 1.016950 | 0.007368 |  |
| 93 | 1.024710 | 0.007368 |  |
| 94 | 1.031950 | 0.007368 |  |
| 95 | 1.038650 | 0.007368 |  |
| 96 | 1.045980 | 0.012480 | End of VIS channel |
| 97 | 0.884210 | 0.012878 |  |
| 98 | 0.900753 | 0.012767 |  |
| 99 | 0.916924 | 0.012507 |  |
| 100 | 0.933078 | 0.013169 |  |
| 101 | 0.949803 | 0.012869 |  |
| 102 | 0.965683 | 0.012728 |  |
| 103 | 0.982262 | 0.013370 |  |
| 104 | 0.998820 | 0.012790 |  |
| 105 | 1.014790 | 0.012748 |  |
| 106 | 1.031320 | 0.013186 |  |
| 107 | 1.047550 | 0.012847 |  |
| 108 | 1.065410 | 0.013136 |  |
| 109 | 1.081830 | 0.013063 |  |
| 110 | 1.098060 | 0.012686 |  |
| 111 | 1.113960 | 0.012828 |  |
| 112 | 1.130240 | 0.013111 |  |
| 113 | 1.146950 | 0.013322 |  |
| 114 | 1.163700 | 0.013266 |  |
| 115 | 1.179960 | 0.012968 |  |
| 116 | 1.196220 | 0.013018 |  |
| 117 | 1.212460 | 0.012921 |  |
| 118 | 1.228590 | 0.013031 |  |
| 119 | 1.244920 | 0.013401 |  |
| 120 | 1.261660 | 0.013631 |  |
| 121 | 1.278130 | 0.013372 |  |


| 122 | 1.294820 | 0.013121 |
| :---: | :---: | :---: |
| 123 | 1.310910 | 0.013101 |
| 124 | 1.326950 | 0.013146 |
| 125 | 1.343240 | 0.013389 |
| 126 | 1.359520 | 0.013663 |
| 127 | 1.376950 | 0.013366 |
| 128 | 1.393260 | 0.012821 |
| 129 | 1.409400 | 0.013147 |
| 130 | 1.425570 | 0.013137 |
| 131 | 1.441840 | 0.013216 |
| 132 | 1.458410 | 0.013480 |
| 133 | 1.475140 | 0.013610 |
| 134 | 1.491690 | 0.013066 |
| 135 | 1.507940 | 0.013063 |
| 136 | 1.524210 | 0.012992 |
| 137 | 1.540350 | 0.013059 |
| 138 | 1.556740 | 0.013388 |
| 139 | 1.573610 | 0.014011 |
| 140 | 1.590180 | 0.013901 |
| 141 | 1.602280 | 0.008457 order-sorting filter change |
| 142 | 1.625230 | 0.032000 order-sorting filter change |
| 143 | 1.641600 | 0.009862 order-sorting filter change |
| 144 | 1.655670 | 0.013304 |
| 145 | 1.672380 | 0.013532 |
| 146 | 1.689010 | 0.013253 |
| 147 | 1.705360 | 0.013300 |
| 148 | 1.721750 | 0.013068 |
| 149 | 1.738020 | 0.013084 |
| 150 | 1.754360 | 0.013155 |
| 151 | 1.771050 | 0.013455 |
| 152 | 1.787710 | 0.013080 |
| 153 | 1.804010 | 0.013090 |
| 154 | 1.820040 | 0.012902 |
| 155 | 1.836160 | 0.012985 |
| 156 | 1.852880 | 0.013531 |
| 157 | 1.869330 | 0.012939 |
| 158 | 1.886790 | 0.012600 |
| 159 | 1.902610 | 0.013058 |
| 160 | 1.919160 | 0.013059 |
| 161 | 1.935450 | 0.013127 |
| 162 | 1.951910 | 0.013498 |
| 163 | 1.968710 | 0.013615 |
| 164 | 1.985310 | 0.013293 |
| 165 | 2.001670 | 0.013209 |
| 166 | 2.017810 | 0.013294 |
| 167 | 2.034240 | 0.013415 |
| 168 | 2.050910 | 0.013889 |
| 169 | 2.067570 | 0.013472 |
| 170 | 2.084000 | 0.013579 |


| 171 | 2.100340 | 0.013428 |
| :--- | :--- | :--- |
| 172 | 2.116670 | 0.013719 |
| 173 | 2.133370 | 0.013943 |
| 174 | 2.150180 | 0.013787 |
| 175 | 2.166520 | 0.013547 |
| 176 | 2.182880 | 0.013600 |
| 177 | 2.199200 | 0.013571 |
| 178 | 2.215910 | 0.014009 |
| 179 | 2.232820 | 0.013918 |
| 180 | 2.249520 | 0.013700 |
| 181 | 2.266220 | 0.013600 |
| 182 | 2.282380 | 0.014012 |
| 183 | 2.299210 | 0.013974 |
| 184 | 2.316120 | 0.014211 |
| 185 | 2.333250 | 0.014287 |
| 186 | 2.350430 | 0.014407 |
| 187 | 2.367650 | 0.014286 |
| 188 | 2.384720 | 0.014294 |
| 189 | 2.401560 | 0.014079 |
| 190 | 2.418200 | 0.013921 |
| 191 | 2.434710 | 0.013829 |
| 192 | 2.450970 | 0.013748 |
| 193 | 2.467230 | 0.013784 |
| 194 | 2.483600 | 0.014044 |
| 195 | 2.500020 | 0.014293 |
| 196 | 2.516590 | 0.014306 |
| 197 | 2.532920 | 0.013704 |
| 198 | 2.549160 | 0.013918 |
| 199 | 2.564370 | 0.011963 |
| 200 | 2.581760 | 0.013610 |
| 201 | 2.598070 | 0.014726 |
| 202 | 2.615080 | 0.012722 |
| 203 | 2.630000 | 0.011283 |
| 204 | 2.646500 | 0.013711 |
| 205 | 2.661460 | 0.012674 |
| 206 | 2.680850 | 0.016119 |
| 207 | 2.696200 | 0.014697 |
| 208 | 2.712050 | 0.015964 |
| 209 | 2.732700 | 0.012786 |
| 210 | 2.747700 | 0.018701 |
| 211 | 2.763050 | 0.016296 |
| 212 | 2.781180 | 0.013689 |
| 213 | 2.798890 | 0.014400 |
| 214 | 2.816060 | 0.015083 |
| 215 | 2.832470 | 0.014680 |
| 216 | 2.849540 | 0.014842 |
| 217 | 2.866090 | 0.015667 |
| 218 | 2.882420 | 0.015534 |
| 219 | 2.898780 | 0.015325 |
|  |  |  |


| 220 | 2.915400 | 0.015088 |  |
| :---: | :---: | :---: | :---: |
| 221 | 2.931430 | 0.015720 |  |
| 222 | 2.947260 | 0.015350 |  |
| 223 | 2.963270 | 0.015716 | order-sorting filter change |
| 224 | 2.977200 | 0.015512 | order-sorting filter change ( $\sim 30 \%$ transmission) |
| 225 | 3.000720 | 0.012919 | order-sorting filter change |
| 226 | 3.013820 | 0.015570 |  |
| 227 | 3.029700 | 0.015398 |  |
| 228 | 3.048060 | 0.014922 |  |
| 229 | 3.064460 | 0.015466 |  |
| 230 | 3.080360 | 0.015882 |  |
| 231 | 3.096890 | 0.015851 |  |
| 232 | 3.112130 | 0.015753 |  |
| 233 | 3.129620 | 0.016580 |  |
| 234 | 3.146670 | 0.015851 |  |
| 235 | 3.163040 | 0.016127 |  |
| 236 | 3.179740 | 0.016115 |  |
| 237 | 3.197080 | 0.015685 |  |
| 238 | 3.213640 | 0.015830 |  |
| 239 | 3.231500 | 0.016740 |  |
| 240 | 3.248060 | 0.017771 |  |
| 241 | 3.265610 | 0.016161 |  |
| 242 | 3.282980 | 0.016285 |  |
| 243 | 3.299460 | 0.016286 |  |
| 244 | 3.316190 | 0.015816 |  |
| 245 | 3.333380 | 0.015203 |  |
| 246 | 3.349810 | 0.016500 |  |
| 247 | 3.365640 | 0.015590 |  |
| 248 | 3.381830 | 0.015717 |  |
| 249 | 3.398720 | 0.016471 |  |
| 250 | 3.415460 | 0.016457 |  |
| 251 | 3.431780 | 0.016343 |  |
| 252 | 3.448740 | 0.015852 |  |
| 253 | 3.464750 | 0.015634 |  |
| 254 | 3.481370 | 0.015608 |  |
| 255 | 3.497950 | 0.015779 |  |
| 256 | 3.512840 | 0.016141 |  |
| 257 | 3.530150 | 0.015057 |  |
| 258 | 3.546640 | 0.016643 |  |
| 259 | 3.562740 | 0.016735 |  |
| 260 | 3.580340 | 0.016474 |  |
| 261 | 3.596100 | 0.017033 |  |
| 262 | 3.613870 | 0.020159 |  |
| 263 | 3.630850 | 0.018293 |  |
| 264 | 3.648530 | 0.017622 |  |
| 265 | 3.665220 | 0.018895 |  |
| 266 | 3.682830 | 0.018505 |  |
| 267 | 3.699530 | 0.019496 |  |
| 268 | 3.717430 | 0.018635 |  |


| 269 | 3.734390 | 0.019045 |  |
| :---: | :---: | :---: | :---: |
| 270 | 3.751030 | 0.019296 |  |
| 271 | 3.767630 | 0.017966 |  |
| 272 | 3.784440 | 0.019006 |  |
| 273 | 3.800830 | 0.018599 |  |
| 274 | 3.817420 | 0.018210 |  |
| 275 | 3.834720 | 0.019856 |  |
| 276 | 3.851410 | 0.018125 |  |
| 277 | 3.861840 | 0.015574 | order-sorting filter change |
| 278 | 3.881670 | 0.023959 | order-sorting filter change |
| 279 | 3.898590 | 0.020270 |  |
| 280 | 3.914780 | 0.021217 |  |
| 281 | 3.930690 | 0.020631 |  |
| 282 | 3.947620 | 0.019721 |  |
| 283 | 3.963750 | 0.020799 |  |
| 284 | 3.980150 | 0.021142 |  |
| 285 | 3.996720 | 0.021846 |  |
| 286 | 4.012800 | 0.021142 |  |
| 287 | 4.029440 | 0.021531 |  |
| 288 | 4.047300 | 0.021598 |  |
| 289 | 4.062950 | 0.022566 |  |
| 290 | 4.080861 | 0.021479 |  |
| 291 | 4.097430 | 0.022433 |  |
| 292 | 4.114500 | 0.022013 |  |
| 293 | 4.131830 | 0.022290 |  |
| 294 | 4.148830 | 0.022294 |  |
| 295 | 4.166440 | 0.020424 |  |
| 296 | 4.183199 | 0.021180 |  |
| 297 | 4.200100 | 0.019057 |  |
| 298 | 4.217000 | 0.017383 |  |
| 299 | 4.233700 | 0.022866 |  |
| 300 | 4.250500 | 0.021600 |  |
| 301 | 4.267300 | 0.021600 |  |
| 302 | 4.284000 | 0.021600 |  |
| 303 | 4.300600 | 0.021600 |  |
| 304 | 4.317101 | 0.021600 |  |
| 305 | 4.333600 | 0.021600 |  |
| 306 | 4.350200 | 0.019916 |  |
| 307 | 4.366500 | 0.021335 |  |
| 308 | 4.382900 | 0.020260 |  |
| 309 | 4.397930 | 0.019563 |  |
| 310 | 4.415370 | 0.021034 |  |
| 311 | 4.431720 | 0.019802 |  |
| 312 | 4.447720 | 0.019867 |  |
| 313 | 4.465730 | 0.019735 |  |
| 314 | 4.482400 | 0.019931 |  |
| 315 | 4.499511 | 0.021189 |  |
| 316 | 4.515910 | 0.020529 |  |
| 317 | 4.533790 | 0.019303 |  |


| 318 | 4.551870 | 0.019921 |
| :---: | :---: | :---: |
| 319 | 4.567970 | 0.020376 |
| 320 | 4.585560 | 0.020113 |
| 321 | 4.602900 | 0.019105 |
| 322 | 4.620100 | 0.020267 |
| 323 | 4.636150 | 0.017409 |
| 324 | 4.654160 | 0.019612 |
| 325 | 4.670340 | 0.018281 |
| 326 | 4.687210 | 0.019814 |
| 327 | 4.702900 | 0.017902 |
| 328 | 4.719561 | 0.020080 |
| 329 | 4.737060 | 0.018831 |
| 330 | 4.753510 | 0.018017 |
| 331 | 4.770310 | 0.015955 hot pixel |
| 332 | 4.786730 | 0.018821 |
| 333 | 4.803490 | 0.017274 |
| 334 | 4.819521 | 0.018179 |
| 335 | 4.835771 | 0.018545 |
| 336 | 4.852920 | 0.018106 |
| 337 | 4.869401 | 0.018799 |
| 338 | 4.885530 | 0.019556 |
| 339 | 4.902650 | 0.018114 |
| 340 | 4.919831 | 0.018570 |
| 341 | 4.936851 | 0.017740 slightly noisier (1.5x at low signal) |
| 342 | 4.953890 | 0.018779 |
| 343 | 4.971780 | 0.018266 |
| 344 | 4.988960 | 0.020001 |
| 345 | 5.005760 | 0.018402 |
| 346 | 5.022400 | 0.018621 |
| 347 | 5.040781 | 0.016783 |
| 348 | 5.057340 | 0.019510 |
| 349 | 5.074020 | 0.017953 |
| 350 | 5.091060 | 0.020883 slightly noisier (2x at low signal) |
| 351 | 5.106800 | 0.015704 |
| 352 | 5.122500 | 0.016 |

## References

Al-Jumaily, G.A., E. Miller, and N. Raof, 1991, C/C VIMS Filter requirements, JPL VIMS Design File Memorandum, 6-25-1991.

Brown, R.H., Baines, K.H., Bellucci, J.P., Bibring, B.J., Buratti, E., Bussoletti, F., Capaccioni, P., Cerroni, P., Clark, R.N., Coradini, D.P., Cruikshank, P., Drossart, Y., Formisano, R., Jaumann, Y., Langevin, D.J., Matson, T.R., 2005, The Cassini visual and infrared mapping spectrometer investigation: Space Science Reviews, 115 (1-4), 111-168.

Clark, R. N., D. P. Cruikshank, R. Jaumann, R. H. Brown, K. Stephan, C. M. Dalle Ore, K. E. Livo, N. Pearson, J. M. Curchin, T. M. Hoefen, B. J. Buratti, G. Filacchione, K. H. Baines, and P. D. Nicholson, 2012, The Composition of Iapetus: Mapping Results from Cassini VIMS, Icarus, 218, 831-860.

Cruikshank, D. P., A. W. Meyerb and, R. H. Brownc and, R. N. Clark, R. Jaumann, K. Stephan, C. A. Hibbitts, S. A. Sandford, R. M.E. Mastrapa, G. Filacchione, C. M. Dalle Ore, P. D. Nicholson, B. J. Buratti, T. B. McCord, R. M. Nelson, J. B. Dalton, K. H. B., and D. L. Matson, 2010, Carbon dioxide on the satellites of Saturn: Results from the Cassini VIMS investigation and revisions to the VIMS wavelength scale, Icarus, 206, 561-572, doi:10.1016/j.icarus.2009.07.012 .

McCord, T. B., Brown, R., Baines, K., Bellucci, G., Bibring, J.-P., Buratti, B., Capaccioni, F., Cerroni, P., Clark, R.N., Coradini, A., Cruikshank, D., Drossar, P., Formisano, V., Jaumann, R., Langevin, Y., Matson, D., Mennella, V., Nelson, R., Nicholson, P., Sicardy, B., Sotin, C., Hansen, G., Hibbitts, C., 2004, Cassini VIMS observations of the Galilean satellites, including the VIMS calibration procedure: Icarus, Vol. 172, p. 104-126.

Miller, Edward A., Gail Klein, David W. Juergens, Kenneth Mehaffey, Jeffrey M. Oseas, Ramon A. Garcia, Anthony Giandomenico, Robert E. Irigoyen, Roger Hickok, David Rosing, Harold R. Sobel, Carl F. Bruce, Jr., Enrico Flamini, Romeo DeVidi, Francis M. Reininger, Michele Dami, Alain Soufflot, Yves Langevin, Gerard Huntzinger, 1996, The Visual and Infrared Mapping Spectrometer for Cassini , Proc. SPIE 2803, Cassini/Huygens: A Mission to the Saturnian Systems, 206-220 (October 7, 1996), doi: 10.1117/12.253421 .

Thompson, D. R., F. C. Seidel, B. C. Gao, M. M. Gierach, R. O. Green, R. M. Kudela, and P. Mouroulis, 2015, Optimizing irradiance estimates for coastal and inland water imaging spectroscopy, Geophys. Res. Lett., 42, 4116-4123, doi:10.1002/2015GL063287.

